PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical modelling of uniaxial compressive strength laboratory tests

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the last decades, numerical modelling has been widely used to simulate rock mass behaviour in geo-engineering issues. The only disadvantage of numerical modelling is the reliability of required input data (e.g. mechanical parameters), which is not always fully provided due to the complexity of rock mass, project budget, available test methods or human errors. On the other hand, it was proven in many cases that numerical modelling is a helpful tool for solving such complex problems, especially when coupled with the results of laboratory and in-situ tests. This paper presents an attempt to determine the proper numerical constitutive model of rock and its mechanical parameters for further simulating rock mass response based on the outcomes of laboratory testing. For this purpose, the available constitutive models, including mechanical parameters, were taken into account. The simulation performance with the selected constitutive models is demonstrated by matching the numerical modelling results with the uniaxial compressive strength laboratory tests of rock samples from the Bogdanka coal mine. All numerical simulations were carried out using the finite difference method software FLAC3D.
Rocznik
Strony
280--294
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
  • Central Mining Institute, Katowice, Poland
  • Central Mining Institute, Katowice, Poland
  • Institute of Geonics, Czech Academy of Sciences, Ostrava, Czech Republic
  • Institute of Geonics, Czech Academy of Sciences, Ostrava, Czech Republic
  • Bogdanka Coal Mnie, Puchaczów, Poland
Bibliografia
  • [1] Bieniawski ZT, Bernede MJ. Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: Part 1. Suggested method for determination of the uniaxial compressive strength of rock materials. Int J Rock Mech Min Sci 1979;16(2):137-8.
  • [2] Bieniawski ZT, Bernede MJ. Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: Part 2. Suggested method for determination deformability of rock materials in uniaxial compression. Int J Rock Mech Min Sci 1979;16(2):138-40. https://doi.org/10.1016/0148-9062(79)91451-7.
  • [3] Goodman RE. Introduction to rock mechanics. 2nd ed. London: Wiley; 1989.
  • [4] Brady BHG, Brown ET. Rock mechanics for underground mining. New York: Kluwer Academic Publish; 2004.
  • [5] Bieniawski ZT. Mechanism of brittle fracture of rock: Part I - theory of the fracture process. Int J Rock Mech Min Sci Sciences & Geomechanics Abstracts. 1967;4(4):395-404. https://doi.org/10.1016/0148-9062(67)90030-7.
  • [6] Martin CD, Chandler NA. The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci Sciences and Geomechanics Abstracts 1994;31(6):643-59. https://doi.org/10.1016/0148-9062(94)90005-1.
  • [7] Li L, Lee PKK, Tsui Y, Tham LG, Tang CA. Failure process of granite. Int J Geom 2003;3(1):84-98. https://doi.org/10.1061/(ASCE)1532-3641(2003)3:1(84).
  • [8] Szwedzicki T. A hypothesis on modes of failure of rock samples tested in uniaxial compression. Rock Mech Rock Eng 2007;40(1):97-104. https://doi.org/10.1007/s00603-006-0096-5.
  • [9] Wong LNY, Einstein HH. Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression. Int J Rock Mech Min Sci 2009;46(2):239-49. https://doi.org/10.1016/j.ijrmms.2008.03.006.
  • [10] Pu CZ, Cao P. Failure characteristics and its influencing factors of rock-like material with multi-fissures under uniaxial compression. Trans Nonferrous Metals Soc China 2012; 22(1):185-91. https://doi.org/10.1016/S1003-6326(11)61159-X.
  • [11] Basu A, Mishra DA, Roychowdhury K. Rock failure modes under uniaxial compression, Brazilian, and point load tests. Bull Eng Geol Environ 2013;72:457-75. https://doi.org/10.1007/s10064-013-0505-4.
  • [12] Eberhardt E, Stead D, Stimpson B, Read RS. Identifying crack initiation and propagation thresholds in brittle rock. Can Geotech J 1998;35(2):222-33. https://doi.org/10.1139/cgj- 35-2-222.
  • [13] Xu H, Qin Y, Wang G, Fan C, Wu M, Wang R. Discrete element study on mesomechanical behavior of crack propagation in coal samples with two prefabricated fissures under biaxial compression. Powder Technol 2020;375:42-59. https://doi.org/10.1016/j.powtec.2020.07.097.
  • [14] Chen W, Wan W, Zhao Y, Peng W. Experimental study of the crack predominance of rock-like material containing parallel double fissures under uniaxial compression. Sustainability 2020;12(12):5188. https://doi.org/10.3390/su12125188.
  • [15] Bobet A, Einstein HH. Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 1998;35(7):863-88. https://doi.org/10.1016/ S0148-9062(98)00005-9.
  • [16] Morgan SP, Einstein HH. The effect of bedding plane orientation on crack propagation and coalescence in shale. In: 48th US rock mechanics/geomechanics symposium. Minneapolis, Minnesota: American Rock Mechanics Association; 2014.
  • [17] Stefanizzi S, Barla GB, Grasselli G. Numerical modelling of standard rock mechanics laboratory tests using a finite/ discrete element approach. In: 3. Canada-US rock mechanics symposium; 20. Canada rock mechanics symposium; 2009. Toronto, Canada.
  • [18] Mahabadi O, Kaifosh P, Marschall P, Vietor T. Threedimensional FDEM numerical simulation of failure processes observed in Opalinus Clay laboratory samples. J Rock Mech Geotech Eng 2014;6(6):591-606. https://doi.org/10.1016/j.jrmge.2014.10.005.
  • [19] Tatone BSA, Grasselli G. A calibration procedure for twodimensional laboratory-scale hybrid finite - discrete element simulations. Int J Rock Mech Min Sci 2015;75:56-72. https://doi.org/10.1016/j.ijrmms.2015.01.011.
  • [20] Mardalizad A, Scazzosi R, Manes A, Giglio M. Testing and numerical simulation of a medium strength rock material under unconfined compression loading. J Rock Mech Geotech Eng 2018;10(2):197-211. https://doi.org/10.1016/j.jrmge.2017.11.009.
  • [21] Xiong LX, Chen HJ, Geng DX. Uniaxial compression study on mechanical properties of artificial rock specimens with cross-flaws. Geotech Geol Eng 2021;39:1667-81. https://doi.org/10.1007/s10706-020-01584-z.
  • [22] Xiong LX, Yuan HY, Zhang Y, Zhang KF, Li JB. Experimental and numerical study of the uniaxial compressive stressestrain relationship of a rock mass with two parallel joints. Arch Civ Eng 2019;65(2):67-80. https://doi.org/10.2478/ace-2019-0019.
  • [23] Oliveira MM, Pinto CLL, Mazzinghy DB. FEM-DEM simulation of Uniaxial Compressive Strength (UCS) laboratory tests. Int Eng J 2020;73(4):561-9. https://doi.org/10.1590/0370-44672019730078.
  • [24] Pajak M, Baranowski P, Janiszewski J, Kucewicz M, Mazurkiewicz L, Łazniewska-Piekarczyk B. Experimental testing and 3D meso-scale numerical simulations of SCC subjected to high compression strain rates. Construct Build Mater 2021;302(6):124379. https://doi.org/10.1016/j.conbuildmat.2021.124379.
  • [25] Kucewicz M, Baranowski P, Małachowski J. Dolomite fracture modelling using the Johnson-Holmquist concrete material model: parameter determination and validation. J Rock Mech Geotech Eng 2021;13(2):335-50. https://doi.org/10.1016/j.jrmge.2020.09.007.
  • [26] Kucewicz M, Baranowski P, Małachowski J. Determination and validation of Karagozian-Case Concrete constitutive model parameters for numerical modeling of dolomite rock. Int J Rock Mech Min Sci 2020;129(7):104302. https://doi.org/10.1016/j.ijrmms.2020.104302.
  • [27] Li H, Wong L. Influence of flaw inclination angle and loading condition on crack initiation and propagation. Int J Solid Struct 2012;49(18):2482-99. https://doi.org/10.1016/j.ijsolstr.2012.05.012.
  • [28] Yang SQ, Huang YH, Jing HW, Liu XR. Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression. Eng Geol 2014;178:28-48. https://doi.org/10.1016/j.enggeo.2014.06.005.
  • [29] Bahaaddini M, Hagan PC, Mitra R, Hebblewhite BK. Scale effect on the shear behaviour of rock Joints based on a numerical study. Eng Geol 2014;181:212-23. https://doi.org/10.1016/j.enggeo.2014.07.018.
  • [30] Zhao W, Huang R, Yan M. Mechanical and fracture behaviour of rock mass with parallel concentrated joints with different dip angle and number based on PFC simulation. Geomechanics and Engineering 2015;8(6):757-67. https://doi.org/10.12989/gae.2015.8.6.757.
  • [31] Haeri H, Sarfarazi V, Zhu Z, Nejati HR. Numerical simulations of fracture shear test in anisotropy rocks with bedding layers. Advances in Concrete Construction 2019;7(4):241-7. https://doi.org/10.12989/acc.2019.7.4.241.
  • [32] Zhang L, Zhu J. Analysis of mechanical strength and failure morphology of prefabricated closed cracked rock mass under uniaxial compression. Geotech Geol Eng 2020;38:4905-15. https://doi.org/10.1007/s10706-020-01335-0.
  • [33] Itasca Consulting Group Inc. FLAC3D (3-dimensional finite difference software). Software available at:. 2012. Minneapolis, Version 5.0. www.itascacg.com.
  • [34] Csn EN. 1926 (72 1142) Zkusebni metody prirodniho kamene - stanoveni pevnosti v prostem tlaku. Cesky normalizacni institut. ICS 73.20; 91.100.15, Cervenec 2007 [In Czech)].
  • [35] Deere DU. Rock quality designation (RQD) after twenty years. Contract Report GL-89-1. Washington, D.C.: U.S. Army Corps of Engineers; 1989.
  • [36] Deere DU, Deere DW. The rock quality designation (RQD) index in practice. In: Proceedings of the symposium rock classification systems for engineering purposes, ASTM Special Publication 984, American Society for Testing and Materials; 1988. p. 91-101. Philadelphia.
  • [37] Bieniawski ZT. Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil and petroleum engineering. New York: John Wiley and Sons, Inc.; 1989.
  • [38] Hoek E, Brown ET. Practical estimates of rock mass strength. Int J Rock Mech Min Sci 1997;34(8):1165-86. https://doi.org/10.1016/S1365-1609(97)80069-X.
  • [39] Kucewicz M, Baranowski P, Małachowski J. Determination and validation of Karagozian-Case Concrete constitutive model parameters for numerical modeling of dolomite rock. Int J Rock Mech Min Sci 2020;129:104302. https://doi.org/10.1016/j.ijrmms.2020.104302.
  • [40] Bomers A, Schielen RMJ, Hulscher SJMH. The influence of grid shape and grid size on hydraulic river modelling performance. Environ Fluid Mech 2019;19:1273-94. https://doi.org/10.1007/s10652-019-09670-4.
  • [41] Guo L, Xiang J, Latham JP, Izzuddin B. A numerical investigation of mesh sensitivity for a new three-dimensional fracture model within the combined finite-discrete element method. Eng Fract Mech 2016;151:70-91. https://doi.org/10.1016/j.engfracmech.2015.11.006.
  • [42] Dutt A. Effect of mesh size on finite element analysis of beam. SSRG Int J Mech Eng 2015;2(12):8-10. https://doi.org/10.14445/23488360/IJME-V2I12P102.
  • [43] Abbasi B, Russell D, Taghavi R. FLAC3D mesh and zone quality. Continuum and distinct element numerical modeling in geomechanics. In: Zhu Detournay, Hart, Nelson, editors. Paper: 11-02. Minneapolis: Itasca International Inc.; 2013.
  • [44] Preh A, Illeditsch M. The perfect mesh for FLAC3D to analyse the stability of rock slopes. In: Conference: 4th international FLAC symposium on numerical modelling in geomechanics; 2006. Madrid, Spain.
  • [45] Strafield M, Cundall P. Towards a methodology for rock mechanics modelling. Int J Rock Mech Min Sci 1988;25(3): 99-106. https://doi.org/10.1016/0148-9062(88)92292-9.
  • [46] Smed EM, Cundall P. Elasto-plasto strain hardening mohr- coulomb model-derivation and implementation. Denmark: Aalborg; 2012.
  • [47] Jaeger JC, Cook NGW. Fundamentals of rock mechanics. 3rd ed. NewYork: Chapman & Hall; 1979.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5eec130-24cb-4af0-8322-a97419a5c1e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.