PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytical calculations of surges caused by direct lightning strike to underground intrusion detection system

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an analysis of overvoltages caused by a direct lightning strike in intrusion detection system equipped with underground radiating cable sensors. Waveforms of currents and voltages in the system components are calculated using analytical formulas basing on a transmission-line model in the frequency domain. The time-domain waveforms are computed using the inverse fast Fourier transform (IFFT). Three network configurations of the intrusion detection system are analyzed.
Rocznik
Strony
263--270
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Białystok University of Technology (BUT), Faculty of Electrical Engineering, 45D Wiejska St., 15-351 Białystok, Poland
Bibliografia
  • [1] IEC 62305, Protection Against Lightning, series of standards, 2010.
  • [2] K. Aniserowicz, Analysis of Electromagnetic Compatibility Problems in Extensive Objects under Lightning Threat (available at http://pbc.biaman.pl/dlibra), BUT, Bialystok 2005 (in Polish).
  • [3] G. Maslowski, Analysis and Modeling of Lightning Discharges for Overvoltage Protection, AGH, Kraków 2010 (in Polish).
  • [4] T. Maksimowicz and K. Aniserowicz, “Simulation of currents induced in a loop by lightning strike of different waveforms”, Przeglad Elektrotechn., 86 (3), 43‒44 (2010).
  • [5] K. Aniserowicz, “Computer analysis of electromagnetic field inside LPS directly stroke by lightning”, 7th Internat. Symp. on Electromagn. Compat. and Electromagn. Ecology, St. Petersburg, Russia, 257‒260 (2007).
  • [6] Radiating Cables – Technical Data Sheet, Kabelwerk, EUPEN AG, 2014.
  • [7] E. Petrache, F. Rachidi, M. Paolone, C.A. Nucci, V.A. Rakov, and M.A. Uman, “Lightning induced disturbances in buried cables – Part I: Theory”, IEEE Trans. on Electromagn. Compat., 47 (3), 498–508 (2005).
  • [8] M. Paolone, E. Petrache, F. Rachidi, C.A. Nucci, V.A. Rakov, M.A. Uman, D. Jordan, K. Rambo, J. Jerauld, M. Nyffeler, and J. Schoene, “Lightning induced disturbances in buried cables – Part II: Experiment and model validation”, IEEE Trans. on Electromagn. Compat., 47 (3), 509–520 (2005).
  • [9] M.B. Higgins, M.E. Morris, M. Caldwell, and C.G. Christodoulou, “Measurement and modeling of the indirect coupling of lightning transients into the Sago mine”, IEEE Trans. on Electromagn. Compat., 52 (1), 136–146 (2010).
  • [10] M. Aguet, M. Ianovici, and C.C. Lin, “Transient electromagnetic field coupling to long shielded cables”, IEEE Trans. on Electromagn. Compat., 22 (4), 276–282 (1980).
  • [11] G.E. Bridges, “Transient plane wave coupling to bare and insulated cables buried in a lossy half-space”, IEEE Trans. on Electromagn. Compat., 37 (1), 62–70 (1995).
  • [12] B. Yang, B.-H. Zhou, B. Chen. J.-B. Wang, and X. Meng, “Numerical study of lightning-induced currents on buried cables and shield wire protection method”, IEEE Trans. on Electromagn. Compat., 54 (2), 323–331 (2012).
  • [13] A. Tatematsu, “A technique for representing coaxial cables for FDTD-based surge simulations”, IEEE Trans. on Electromagn. Compat., 57 (3), 488–495 (2015).
  • [14] M.E.M. Rizk, F. Mahmood, M. Lehtonen, E.A. Badran, and M.H. Abdel-Rahman, “Investigation of lightning electromagnetic fields on underground cables in wind farms”, IEEE Trans. on Electromagn. Compat., 58 (1), 143–152 (2016).
  • [15] H. Tanaka, Y. Baba, and C.F. Barbosa, “Effect of shield wires on the lightning-induced currents on buried cables”, IEEE Trans. on Electromagn. Compat., 58 (3), 738–746 (2016).
  • [16] Z. Ye, X. Xiong, M. Zhang, and C. Liao, “A time-domain hybrid method for coupling problems of long cables excited by electromagnetic pulses”, IEEE Trans. on Electromagn. Compat., 58 (6), 1710–1716 (2016).
  • [17] J. Paknahad, K. Sheshyekani, F. Rachidi, M. Paolone, and A. Mimouni, “Evaluation of lightning-induced currents on cables buried in a lossy dispersive ground”, IEEE Trans. on Electromagn. Compat., 56 (6), 1522–1529 (2014).
  • [18] J.K. Sykulski, “Computational electromagnetics for design optimisation: The state of the art and conjectures for the future”, Bull. Pol. Ac.: Tech. 57 (2), 123–131 (2009).
  • [19] M. Ianoz, “Review of new developments in the modeling of lightning electromagnetic effects on overhead lines and buried cables”, IEEE Trans. on Electromagn. Compat., 49 (2), 224–236 (2007).
  • [20] E.F. Vance, Coupling to Shielded Cables, Wiley–Interscience, 1978.
  • [21] F. Rachidi and S. Tkachenko, Electromagnetic Field Interaction with Transmission Lines, WIT Press, 2008.
  • [22] K. Aniserowicz and R. Markowska, “Analytical and numerical calculations of overvoltages in underground cable of intrusion detection system directly hit by lightning”, in Internat. Conf. on Lightning Protection ICLP 2018, Rzeszów, Poland (2018).
  • [23] K. Aniserowicz and R. Markowska, “Semi-analytic calculations of overvoltages caused by direct lightning strike in buried coaxial cable”, Przeglad Elektrotechniczny, 93 (12), 1‒5 (2017).
  • [24] R. Markowska and K. Aniserowicz, “Lightning currents and overvoltages in underground radiating cables of intrusion detection system”, Przeglad Elektrotechniczny, 94 (2), 34‒40 (2018).
  • [25] MATLAB Computing Environment, The MathWorks, Inc., 2018.
  • [26] V. Cooray (ed.), The Lightning Flash, IEE, London 2003.
  • [27] CIGRE TB 549, Lightning Parameters for Engineering Applications, WG C4.407, August, 2013.
  • [28] M.A. Uman, “Natural lightning”, IEEE Trans. on Industry Applications, 30 (3), 785‒790 (1994).
  • [29] K Aniserowicz, “Nature of atmospheric discharges”, Telekomunikacja i Techniki Informacyjne, 1‒2, 59‒67 (2013).
  • [30] P. Rózga, “Streamer propagation in a non-uniform electric field under lightning impulse in short gaps insulated with natural ester and mineral oil”, Bull. Pol. Ac.: Tech. 64 (1), 171–179 (2016).
Uwagi
EN
This work was conducted within Rector’s Project S/WE/1/2015, financially supported by Polish Ministry of Science and Higher Education.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5eea72b-76d5-4d17-afe8-e3dbee78df22
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.