PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stroke is the most common neurological condition worldwide and causes various sequelae, such as motor impairment, cognitive deficit, and language problems. Typically, a radiologist segments the lesion directly. This is time-consuming and relies on the subjective perception of a specialist, so studies that automatically segment stroke lesions are very important in this regard. Although recent medical image segmentation studies have achieved great results using deep learning techniques, there are still many trainable parameters, and long-term dependence problems still exist. To solve these problems, we propose an efficient U-Net (eUNet) for segmenting chronic stroke lesions. The proposed e-UNet incorporates a depthwise convolution-based e-block designed to efficiently reduce the trainable parameters. A global-feature attention block (GA-block) improves segmentation performance by capturing global features between the encoder and decoder. The proposed e-UNet reduces the number of trainable parameters by 3.75 times compared to U-Net.We used the Anatomical Tracings of Lesions After Stroke (ATLAS) dataset to evaluate e-UNet. The lesions segmentation performance of the proposed e-UNet achieved 59.2%, 45.5%, 77.7%, 52.3%, and 52.3% in Dice, IoU, precision, and recall, respectively, for the test dataset (8694 2D images).
Twórcy
  • Department of Information and Communication Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk-do, Republic of Korea
  • Institute of Networked and Embedded Systems, University of Klagenfurt, Klagenfurt am Wörthersee, Austria
  • Department of Information and Communication Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk-do, Republic of Korea
  • Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea
  • Department of Information and Communication Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk-do, Republic of Korea
Bibliografia
  • [1] Lu R, Marziliano P, Thng C.H. Liver tumor volume estimation by semi-automatic segmentation method. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE; 2006, p. 3296–3299.
  • [2] Johnson W, Onuma O, Owolabi M, Sachdev S. Stroke: a global response is needed. Bulletin of the World Health Organization 2016;94(9):634.
  • [3] Krishnamurthi R, Ikeda T, Feigin V. Global, regional and country-specific burden of ischaemic stroke, intracerebral haemorrhage and subarachnoid haemorrhage: a systematic analysis of the global burden of disease study 2017. Neuroepidemiology 2020;54(Suppl. 2):171–9.
  • [4] Neumann AB, Jonsdottir KY, Mouridsen K, Hjort N, Gyldensted C, Bizzi A, et al. Interrater agreement for final infarct mri lesion delineation. Stroke 2009;40(12):3768–71.
  • [5] Belda-Lois J-M, Mena-del Horno S, Bermejo-Bosch I, Moreno JC, Pons JL, Farina D, et al. Rehabilitation of gait after stroke: a review towards a top-down approach. J NeuroEng Rehabil 2011;8(1):66. https://doi.org/10.1186/1743-0003-8-66.
  • [6] Soulard J, Huber C, Baillieul S, Thuriot A, Renard F, Aubert Broche B, et al. Motor tract integrity predicts walking recovery: A diffusion MRI study in subacute stroke. Neurology 2020;94(6):e583–93.
  • [7] Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Call-away CW, Carson AP, et al. Heart disease and stroke statistics— 2020 update: a report from the american heart association. Circulation 2020;141(9):e139–596.
  • [8] Liew S-L, Anglin JM, Banks NW, Sondag M, Ito KL, Kim H, et al. A large, open source dataset of stroke anatomical brain images and manual lesion segmentations. Sci Data 2018;5(1). https://doi.org/10.1038/sdata.2018.11.
  • [9] Burke Quinlan E, Dodakian L, See J, McKenzie A, Le V, Wojnowicz M, et al. Neural function, injury, and stroke subtype predict treatment gains after stroke. Ann Neurol 2015;77(1):132–45.
  • [10] Allen LM, Hasso AN, Handwerker J, Farid H. Sequence-specific mr imaging findings that are useful in dating ischemic stroke. Radiographics 2012;32(5):1285–97.
  • [11] Ito KL, Kim H, Liew S-L. A comparison of automated lesion segmentation approaches for chronic stroke t1-weighted mri data. Hum Brain Mapp 2019;40(16):4669–85.
  • [12] Sathish R, Rajan R, Vupputuri A, Ghosh N, Sheet D. Adversarially trained convolutional neural networks for semantic segmentation of ischaemic stroke lesion using multisequence magnetic resonance imaging. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2019, p. 1010–1013.
  • [13] Kumar A, Upadhyay N, Ghosal P, Chowdhury T, Das D, Mukherjee A, et al. Csnet: A new deepnet framework for is chemic stroke lesion segmentation. Comput Methods Programs Biomed 2020;193:105524.
  • [14] Pereira S, Pinto A, Amorim J, Ribeiro A, Alves V, Silva CA. Adaptive feature recombination and recalibration for semantic segmentation with fully convolutional networks. IEEE Trans Med Imaging 2019;38(12):2914–25.
  • [15] Hu X, Luo W, Hu J, Guo S, Huang W, Scott MR, et al. Brain segnet: 3d local refinement network for brain lesion segmentation. BMC Med Imaging 2020;20(1):17.
  • [16] Wang G, Song T, Dong Q, Cui M, Huang N, Zhang S. Automatic ischemic stroke lesion segmentation from computed tomography perfusion images by image synthesis and attention-based deep neural networks. Med Image Anal 2020;65:101787.
  • [17] Maier O, Menze BH, von der Gablentz J, Häni L, Heinrich MP, Liebrand M, et al. Isles 2015-a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral mri. Med Image Anal 2017;35:250–69.
  • [18] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer. p. 234–41.
  • [19] Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. p. 2881–90.
  • [20] Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 2017;39(12):2481–95.
  • [21] Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H. Encoderdecoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV). p. 801–18.
  • [22] Tulsani A, Kumar P, Pathan S. Automated segmentation of optic disc and optic cup for glaucoma assessment using improved unet++ architecture. Biocybernetics and Biomedical. Engineering 2021;41(2):819–32.
  • [23] Hambarde P, Talbar S, Mahajan A, Chavan S, Thakur M, Sable N. Prostate lesion segmentation in mr images using radiomics based deeply supervised u-net. Biocybernet Biomed Eng 2020;40(4):1421–35.
  • [24] Khanna A, Londhe ND, Gupta S, Semwal A. A deep residual unet convolutional neural network for automated lung segmentation in computed tomography images. Biocybernet Biomed Eng 2020;40(3):1314–27.
  • [25] Stenman S, Bychkov D, Kucukel H, Linder N, Haglund C, Arola J, et al. Antibody supervised training of a deep learning based algorithm for leukocyte segmentation in papillary thyroid carcinoma. IEEE J Biomed Health Inf 2021;25(2):422–8.
  • [26] Kushnure DT, Talbar SN. Ms-unet: A multi-scale unet with feature recalibration approach for automatic liver and tumor segmentation in ct images. Comput Med Imaging Graph 2021;89:101885.
  • [27] Ghaffari M, Sowmya A, Oliver R. Automated brain tumor segmentation using multimodal brain scans: a survey based on models submitted to the brats 2012–2018 challenges. IEEE Rev Biomed Eng 2020;13:156–68.
  • [28] Kadry S, Damasevicius R, Taniar D, Rajinikanth V, Lawal IA. Extraction of tumour in breast mri using joint thresholding and segmentation – a study. In: 2021 Seventh International conference on Bio Signals, Images, and Instrumentation (ICBSII). p. 1–5.
  • [29] Zheng C, Chen L, Jian J, Li J, Gao Z. Efficacy evaluation of interventional therapy for primary liver cancer using magnetic resonance imaging and ct scanning under deep learning and treatment of vasovagal reflex. J Supercomput 2021;77(7):7535–48.
  • [30] Kadry S, Rajinikanth V, Raja NSM, Jude Hemanth D, Hannon NMS, Raj ANJ. Evaluation of brain tumor using brain mri with modified-moth-flame algorithm and kapur’s thresholding: a study. Evol Intel 2021;14(2):1053–63.
  • [31] Rajinikanth V, Joseph Raj AN, Thanaraj KP, Naik GR. A customized vgg19 network with concatenation of deep and biocybernetics and handcrafted features for brain tumor detection. Appl Sci 2020;10(10):3429.
  • [32] Winzeck S, Hakim A, McKinley R, Pinto JA, Alves V, Silva C, et al. Isles 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral mri. Front Neurol 2018;9:679.
  • [33] Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, et al. Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. Med Image Anal 2017;36:61–78.
  • [34] Zhang R, Zhao L, Lou W, Abrigo JM, Mok VCT, Chu WCW, et al. Automatic segmentation of acute ischemic stroke from dwi using 3-d fully convolutional densenets. IEEE Trans Med Imaging 2018;37(9):2149–60.
  • [35] Clèrigues A, Valverde S, Bernal J, Freixenet J, Oliver A, Lladó X. Acute and sub-acute stroke lesion segmentation from multimodal MRI. Comput Methods Programs Biomed 2020;194:105521.
  • [36] Liu L, Chen S, Zhang F, Wu FX, Pan Y, Wang J. Deep convolutional neural network for automatically segmenting acute ischemic stroke lesion in multi-modality mri. Neural Comput Appl 2020;32(11):6545–58.
  • [37] Liu L, Wu F-X, Wang J. Efficient multi-kernel dcnn with pixel dropout for stroke mri segmentation. Neurocomputing 2019;350:117–27.
  • [38] Tomita N, Jiang S, Maeder ME, Hassanpour S. Automatic post-stroke lesion segmentation on MR images using 3D residual convolutional neural network. NeuroImage: Clinical 2020;27:102276.
  • [39] Qi K, Yang H, Li C, Liu Z, Wang M, Liu Q, et al. Xnet: Brain stroke lesion segmentation based on depthwise separable convolution and long-range dependencies. In: International conference on medical image computing and computer-assisted intervention. Springer. p. 247–55.
  • [40] Yang H, Huang W, Qi K, Li C, Liu X, Wang M, et al. Clci-net: Cross-level fusion and context inference networks for lesion segmentation of chronic stroke. In: International conference on medical image computing and computer-assisted intervention. Springer. p. 266–74.
  • [41] Liu X, Yang H, Qi K, Dong P, Liu Q, Liu X, et al. Msdf-net: Multiscale deep fusion network for stroke lesion segmentation. IEEE Access 2019;7:178486–95.
  • [42] Zhou Y, Huang W, Dong P, Xia Y, Wang S. D-unet: a dimension-fusion u shape network for chronic stroke lesion segmentation. IEEE/ACM transactions on computational biology and bioinformatics 2019.
  • [43] Zhang Y, Wu J, Liu Y, Chen Y, Wu EX, Tang X. A 3d+ 2d cnn approach incorporating boundary loss for stroke lesion segmentation. In: International Workshop on Machine Learning in Medical Imaging. Springer. p. 101–10.
  • [44] Zhang Y, Wu J, Liu Y, Chen Y, Wu EX, Tang X. Mi- unet: Multi-inputs unet incorporating brain parcellation for stroke lesion segmentation from t1-weighted magnetic resonance images. IEEE J Biomed Health Inf 2021;25(2):526–35.
  • [45] Fukushima K, Miyake SN. A self-organizing neural network model for a mechanism of visual pattern recognition. In: Competition and cooperation in neural nets. Springer. p. 267–85.
  • [46] Zhang Y, Liu S, Li C, Wang J. Application of deep learning method on ischemic stroke lesion segmentation. J Shanghai Jiaotong Univ (Science) 2022;27(1):99–111.
  • [47] Chollet FX. Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. p. 1251–8.
  • [48] Zhang H, Dana K, Shi J, Zhang Z, Wang X, Tyagi A, et al. Context encoding for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. p. 7151–60.
  • [49] Ni J, Wu J, Tong J, Chen Z, Zhao J. Gc-net: Global context network for medical image segmentation. Comput Methods Programs Biomed 2020;190:105121. https://doi.org/10.1016/j. Cmpb.2019.105121.
  • [50] Guo F, Li W, Kuang Z, Tang J. Mes-net: a new network for retinal image segmentation. Multimedia Tools Appl 2021;80 (10):14767–88.
  • [51] Isensee F, Petersen J, Klein A, Zimmerer D, Jaeger PF, Kohl S, et al. nnu-net: Self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:180910486 2018.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5e38a03-9e6e-4bf1-b14a-47e10e7ea51e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.