PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ecological Assessment of Heavy Metal Content in Ukrainian Soils

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Military actions bring many negative consequences both in the short and long term. In particular, not only people suffer during armed aggression, but also the ecosystem and agrocenoses. This article examined the impact of bombardment of agricultural land with aerial bombs and established whether it was really contaminated with heavy metals. Samples were collected in two regions of Ukraine – Sumy and Chernihiv – from craters formed by bombing. The soil was taken directly from the bottom of the crater, at three points on its slope and 20 meters from the crater, in a conditionally undamaged area. The soil was analyzed in the laboratory using X–ray fluorescence analysis. The study analyzed the content of barium, zirconium, rubidium, zinc, and vanadium soil samples from a crater. The impact of aerial bombings on the concentration of heavy metals in the soils of the farms under investigation is unclear, it may be inferred. The concentration of barium, zirconium, and manganese on the crater slopes is higher in certain farms than in others, but overall trends do not show an obvious increase in these elements when compared to the control sites. However, several farms did not report significant shifts in the heavy metal composition, indicating how challenging it is to monitor whether explosions affect the concentrations of these elements. With a few exceptions, other heavy elements including strontium, rubidium, and zinc did not consistently exhibit excesses in the craters. Therefore, further, more thorough assessment of soil contamination should be carried out and methods for remediation should be developed.
Rocznik
Strony
100--108
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
  • Sumy National Agrarian University, 160, H. Kondratieva Str., Sumy, 40021, Ukraine
  • Sumy National Agrarian University, 160, H. Kondratieva Str., Sumy, 40021, Ukraine
  • Sumy National Agrarian University, 160, H. Kondratieva Str., Sumy, 40021, Ukraine
autor
  • Sumy National Agrarian University, 160, H. Kondratieva Str., Sumy, 40021, Ukraine
  • Royal Agricultural University, GL7 6JS, Cirencester, Gloucestershire, United Kingdom
  • Sumy National Agrarian University, 160, H. Kondratieva Str., Sumy, 40021, Ukraine
  • Sumy National Agrarian University, 160, H. Kondratieva Str., Sumy, 40021, Ukraine
  • Sumy National Agrarian University, 160, H. Kondratieva Str., Sumy, 40021, Ukraine
  • National Scientific Center Institute for Soil Science and Agrochemistry Research Named after O.N. Sokolovsky, Ukraine
Bibliografia
  • 1. Al Lami M.H., Al Obaidy A.H.M., J. Al Sudani I.M. 2021. Assessment of ecological pollution of heavy metals in surface soils of different sites within north west of Iraq. In IOP Conference Series: Earth and Environmental Science, 779(1), 012063. https://doi. org/10.1088/1755–1315/779/1/012063
  • 2. Alieksieiev O., Vradiy O. 2023. Organic agriculture as an element of soil preservation and restoration. Agriculture and Forestry, 228–239. https://doi. org/10.37128/2707–5826–2023–3–17
  • 3. Altermann M., Rinklebe J., Merbach I., Körschens M., Langer U., Hofmann B. 2005. Chernozem–soil of the year 2005. Journal of Plant Nutrition and Soil Science, 168(6), 725–740.
  • 4. Bonchkovskyi O., Ostapenko P., Shvaiko V., Bonchkovskyi A. 2023. Remote sensing as a key tool for assessing war–induced damage to soil cover in Ukraine (the case study of Kyinska territorial hromada). Journal of Geology, Geography and Geoecology, 32(3), 474–487. https://doi.org/https://doi.org/10.15421/112342
  • 5. Broadley M.R., White P.J., Hammond J.P., Zelko I., Lux A. 2007. Zinc in plants. New phytologist, 173(4), 677–702.
  • 6. Chernysh Y., Chubur V., Ablieieva I., Skvortsova P., Yakhnenko O., Skydanenko M., Plyatsuk L., Roubík H. 2024. Soil Contamination by Heavy Metals and Radionuclides and Related Bioremediation Techniques: A Review. Soil Syst., 8, 36. https://doi.org/10.3390/soilsystems8020036
  • 7. Chowdhury M.J., Blust R. 2011. Strontium. Fish physiology, 31, 351–390. https://doi.org/10.1016/S1546–5098(11)31029–1
  • 8. Chvaliuk H.V., Hrubinko V.V. 2022. Nature groans from war: how war destroys the ecology of Ukraine. Ternopil Bioscience, 131–153.
  • 9. Datsko O., Kovalenko V., Yatsenko V., Sakhoshko M., Hotvianska A., Solohub I., Horshchar V., Dubovyk I., Kriuchko L., Tkachenko R. 2024. Increasing soil fertility as a factor in the sustainability of agriculture and resilience to climate change. Modern Phytomorphology, 18, 110–113.
  • 10. Etim E.U., Onianwa P.C. 2012. Lead contamination of soil in the vicinity of a military shooting range in Ibadan, Nigeria. Toxicological & Environmental Chemistry, 94(5), 895–905. https://doi.org/10.1080 /02772248.2012.678997
  • 11. FAOSTAT. 2022. FAO statistical database, https://www.fao.org/faostat/en/#home
  • 12. Golubović T., Blagojević B. 2012. Transfer and bioaccumulation of heavy metal ions from soil into plants. Safety Engineering, 2(1), 1–4. https://doi.org/10.7562/SE2012.2.01.01
  • 13. Greičiūtė K., Juozulynas A., Šurkienė G., Valeikienė V. 2007. Research on soil disturbance and pollution with heavy metals in military grounds. Geologija, 57, 14–20.
  • 14. Guzman–Rangel G., Montalvo D., Smolders E. 2018. Pronounced Antagonism of Zinc and Arsenate on Toxicity to Barley Root Elongation in Soil. Environments, 5(7), 83. https://doi.org/10.3390/environments5070083
  • 15. Hryhoriv Y., Butenko A., Solovei H., Filon V., Skydan M., Kravchenko N., Masyk I., Zakharchenko E., Tykhonova O., Polyvanyi A. 2024. Study of the Impact of Changes in the Acid-Base Buffering Capacity of Surface Sod–Podzolic Soils. Journal of Ecological Engineering, 25(6), 73–79. https://doi.org/10.12911/22998993/186928
  • 16. Hu B., Chen S., Hu J., Xia F., Xu J., Li Y., Shi Z. 2017. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution. PLoS ONE, 12(2). e0172438. https://doi.org/10.1371/journal.pone.0172438
  • 17. Huang L., Ye J., Jiang K., Wang Y., Li Y. 2021. Oil contamination drives the transformation of soil microbial communities: Co–occurrence pattern, metabolic enzymes and culturable hydrocarbon–degrading bacteria. Ecotoxicology and Environmental Safety, 225, 112740. https://doi.org/10.1016/j.ecoenv.2021.112740
  • 18. Jang M. 2010. Application of portable X–ray fluorescence (pXRF) for heavy metal analysis of soils in crop fields near abandoned mine sites. Environ Geochem Health 32, 207–216. https://doi.org/10.1007/s10653–009–9276–z
  • 19. Karbivska U., Kurgak V., Gamayunova V., Butenko A., Malynka L., Kovalenko I., Onychko V., Masyk I., Chyrva A., Zakharchenko E., Tkachenko O., Pshychenko O. 2020. Productivity and quality of diverse ripe pasture grass fodder depends on the method of soil cultivation. Acta Agrobotanica, 73(3), 1–11. https://doi.org/10.5586/aa.7334
  • 20. Karbivska U., Masyk I., Butenko A., Onychko V., Onychko T., Krіuchko L., Rozhko V., Karpenko O., Kozak M. 2022. Nutrient balance of sod–podzolic soil depending on the productivity of meadow agrophytocenosis and fertilization. Ecological Engineering & Environmental Technology, 23(2), 70–77. https://doi.org/10.12912/27197050/144957
  • 21. Kolisnyk O., Yakovets L., Amons S., Butenko A., Onychko V., Tykhonova O., Hotvianska A., Kravchenko N., Vereshchahin I., Yatsenko V. 2024. Simulation of high–product soy crops based on the application of foliar fertilization in the conditions of the right bank of the forest steppe of Ukraine. Ecological Engineering & Environmental Technology, 25(7), 234–243. https://doi.org/10.12912/27197050/188638
  • 22. Kolisnyk O.M, Kolisnyk O.O, Vatamaniuk O.V, Butenko A.O. 2020. Analysis of strategies for combining productivity with disease and pest resistance in the genotype of base breeding lines of maize in the system of diallele crosses. Modern Phytomorphology, 14, 49–55.
  • 23. Kovalenko V., Kovalenko N., Gamayunova V., Butenko A., Kabanets V., Salatenko I., Kandyba N., Vandyk M. 2024a. Ecological and techno logical evaluation of the nutrition of perennial legumes and their effectiveness for animals. Journal of Ecological Engineering, 25(4), 294–304. doi.org/10.12911/22998993/185219
  • 24. Kovalenko V., Tonkha O., Fedorchuk M., Butenko A., Toryanik V., Davydenko G., Bordun R., Kharchenko S., Polyvanyi A. 2024b. The influence of elements of technology and soil–dimatic factors on the agrobiological properties of Onobrychis viciifolia. Ecological Engineering & Environmental Technology, 25(5), 179–190. doi.org/10.12912/27197050/185709
  • 25. Madejón P. 2013. Barium. In: Alloway, B. (eds) heavy metals in soils. Environmental Pollution, 22, 507–514. Springer, Dordrecht. https://doi.org/10.1007/978–94–007–4470–7_19
  • 26. Mesić Kiš I., Karaica B., Medunić G., Romić M., Šabarić J., Balen D., Šoštarko K. 2016. Soil, bark and leaf trace metal loads related to the war legacy (The Prašnik rainforest, Croatia). Rudarsko geološko–naftni zbornik, 31(2), 13–28. https://doi.org/10.17794/rgn.2016.2.2
  • 27. Patseva I.H., Alpatova O.M., Demchuk L.I., Kireitseva H.V., Levytskyi V.H. 2022. The current state of the environment under the influence of war. Scientific and Practical Journal, (302), 19–22. https://doi.org/10.32846/2306–9716/2022.eco.4–43.3
  • 28. Pykhtieieva E.G., Bolshoy D.V., Pykhtieieva E.D. 2023. A look at the toxicology of heavy metals in wartime conditions. Actual Problems of Preventive Medicine, 26, 9–16. https://doi.org/10.32782/2786–9067–2023–26–1
  • 29. Qu M., Chen J., Li W., Zhang C., Wan M., Huang B., Zhao, Y. 2019. Correction of in–situ portable X–ray fluorescence (PXRF) data of soil heavy metal for enhancing spatial prediction. Environmental Pollution, 254, 112993. https://doi.org/10.1016/j.envpol.2019.11299
  • 30. Radchenko M., Trotsenko V., Butenko A., Hotvianska A., Gulenko O., Nozdrina N., Karpenko O., Rozhko V. 2024. Influence of seeding rate on the productivity and quality of soft spring wheat grain. Agriculture and Forestry, 70(1), 91–103 doi.org/10.17707/AgricultForest. 70.1.06
  • 31. Shahid M., Ferrand E., Schreck E., Dumat C. 2013. Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology, 221. Reviews of Environmental Contamination and Toxicology, 221, 107–127. Springer, New York, NY. https://doi.org/10.1007/978–1–4614–4448–0_2
  • 32. Shebanina O., Kormyshkin I., Bondar A., Bulba I., Ualkhanov B. 2023. Ukrainian soil pollution before and after the Russian invasion. International Journal of Environmental Studies, 81(1), 208–215. https://doi.org/10.1080/00207233.2023.2245288
  • 33. Silver W.L., Perez T., Mayer A., Jones A.R. 2021. The role of soil in the contribution of food and feed. Phil. Trans. R. Soc. B, 376, 20200181. https://doi.org/10.1098/rstb.2020.0181
  • 34. Solokha M., Pereira P., Symochko L., Vynokurova N., Demyanyuk O., Sementsova K., Inacio M., Barcelo D. 2023. Russian–Ukrainian war impacts on the environment. Evidence from the field on soil properties and remote sensing. Science of The Total Environment, 902, 166122. https://doi.org/10.1016/j.scitotenv.2023.166122
  • 35. Specht A.J., Lindsay I.C., Wells E.M., Rubaii K. 2024. Spatial distribution of heavy metal contamination in soils of Fallujah, Iraq. Expo Health, 1–9. https://doi.org/10.1007/s12403–024–00645–5
  • 36. Splodytel A., Holubtsov O., Chumachenko S., Sorokina L. 2023. The impact of russia’s war against Ukraine on the state of Ukrainian soils. Results of the analysis. NGO “Center for Environmental Initiatives ‘Ecodia’, 155. https://dspace.organic–platform.org/xmlui/handle/data/618
  • 37. Stadler T., Temesi Á., Lakner Z. 2022. Soil chemical pollution and military actions: a bibliometric analysis. Sustainability, 14(12), 7138. https://doi.org/10.3390/su14127138
  • 38. Tešan Tomić N., Smiljanić S., Jović M., Gligorić M., Povrenović D., Došić A. 2018. Examining the effects of the destroying ammunition, mines, and explosive devices on the presence of heavy metals in soil of open detonation pit: Part 1–Pseudo–total concentration. Water, Air, & Soil Pollution, 229(9), 301. https://doi.org/10.1007/s11270–018–3957–0
  • 39. Velayatzadeh M. 2023. Heavy metals in surface soils and crops. В B. A. Almayyahi (Ed.). Heavy Metals–Recent Advances. IntechOpen. https://doi.org/10.5772/intechopen.108824
  • 40. Vidosavljević D., Puntarić D., Gvozdić V., Jergović M., Jurčev–Savičević A., Puntarić I., Puntarić E., Vidosavljević M. 2014. Trace Metals in the Environment and Population as Possible Long Term Consequence of War in Osijek–Baranja County, Croatia. 38(3), 925–932.
  • 41. Vidosavljević D., Puntarić D., Gvozdić V., Jergović M., Miškulin M., Puntarić I., Puntarić E., Šijanović S. 2013. Soil contamination as a possible long–term consequence of war in Croatia. Acta Agriculturae Scandinavica, Section B – Soil & Plant Science, 63(4), 322–329. https://doi.org/10.1080/09064710.2013.777093
  • 42. Wan M., Qu M., Hu W., Li W., Zhang C., Cheng, H., Huang B. 2019. Estimation of soil pH using PXRF spectrometry and Vis–NIR spectroscopy for rapid environmental risk assessment of soil heavy metals. Process Safety and Environmental Protection, 132, 73–81. https://doi.org/10.1016/j.psep.2019.09.025
  • 43. Wang Y., Dang F., Evans R.D., Zhong H., Zhao J., Zhou D. 2016. Mechanistic understanding of MeHg–Se antagonism in soil–rice systems: The key role of antagonism in soil. Scientific Reports, 6(1), 19477. https://doi.org/10.1038/srep19477
  • 44. Williams O.H., Rintoul Hynes N.L.J. 2022. Legacy of war: Pedogenesis divergence and heavy metal contamination on the WWI front line a century after battle. European Journal of Soil Science, 73(4), e13297. https://doi.org/10.1111/ejss.13297
  • 45. Xia F., Hu B., Shao S., Xu D., Zhou Y., Zhou Y., Huang M., Li Y., Chen S., Shi Z. 2019. Improvement of Spatial Modeling of Cr, Pb, Cd, As and Ni in Soil Based on Portable X–ray Fluorescence (PXRF) and Geostatistics: A Case Study in East China. Int. J. Environ. Res. Public Health, 16, 2694. https://doi.org/10.3390/ijerph16152694
  • 46. Xuezhi D. 2020. Remediation Methods of Crude Oil Contaminated Soil. World Journal of Agriculture and Soil Science, 4(4). https://doi.org/10.33552/WJASS.2020.04.000595
  • 47. Yakymchuk A., Balanda O., Bzowska–Bakalarz M. 2024. Assessment of soil contamination of Ukraine with heavy metals during the war. Scientific Papers of Silesian University of Technology. Organization & Management/Zeszyty Naukowe Politechniki Slaskiej. Seria Organizacji i Zarzadzanie, (196), 667–685. http://dx.doi.org/10.29119/1641–3466.2024.196.45
  • 48. Zaitsev Yu., Hryshchenko O., Romanova S., Zaitseva I. 2022. Influence of combat actions on the content of gross forms of heavy metals in the soils of Sumy and Okhtyrka districts of Sumy region. Agroecological journal, 3, 136–149. https://doi.org/10.33730/2077–4893.3.2022.266419
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5e2567e-b84c-4992-9e9c-f2fcd2032014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.