PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preview Control applied for humanoid robot motion generation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a concept of humanoid robot motion generation using the dedicated simplified dynamic model of the robot (Extended Cart-Table model). Humanoid robot gait with equal steps length is considered. Motion pattern is obtained here with use of Preview Control method. Motion trajectories are first obtained in simulations (off-line) and then they are verified on a test-bed. Tests performed using the real robot confirmed the correctness of the method. Robot completed a set of steps without losing its balance.
Rocznik
Strony
111--132
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr., wzory
Twórcy
  • Warsaw University of Technology, The Faculty of Power and Aeronautical Engineering, Warsaw, Nowowiejska 24 Str, Poland
  • Warsaw University of Technology, The Faculty of Power and Aeronautical Engineering, Warsaw, Nowowiejska 24 Str, Poland
  • Warsaw University of Technology, The Faculty of Power and Aeronautical Engineering, Warsaw, Nowowiejska 24 Str, Poland
Bibliografia
  • [1] C. Chevallereau, H. Razavi, D. Six, Y. Aoustin, and J. Grizzle: Self-synchronization and self-stabilization of 3D bipedal walking gaits. Robotics and Autonomous Systems (2018), 43–60.
  • [2] S. H. Collins, M. Wisse, and A. Ruina: A three-dimensional passive dynamic walking robot with two legs and knees. International Journal of Robotics Research, 20(7) (2011), 607–615.
  • [3] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa: Biped walking pattern generation by using preview control of zero-moment point. Proc. of IEEE International Conference on Robotics and Automation (2003), 1620–1626.
  • [4] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa: The 3D linear inverted pendulum mode: A simple modeling for a biped walking pattern generation. Proc. of IEEE International Conference on Intelligent Robots and Systems, 1 (2001), 239–240.
  • [5] T. Katayama, T. Ohki, T. Inoue, and T. Kato: Design of an optimal controller for a discrete–time system subject to previewable demand. Int. J. of Control, 41 (1985), 677–699.
  • [6] Z. Li, N. G. Tsagarakis, and D. G Caldwell: Walking pattern generation for a humanoid robot with compliant joints. Autonomous Robots, 35(1) (2016), 1–14.
  • [7] V. Lippi, T. Mergner, M.Szumowski, M. S. Żurawska, and T. Zielinska: Human-Inspired Humanoid Balancing and Posture Control in Frontal Plane. Proc. of the 21st CISM-IFToMM Symposium (2016), 285–292.
  • [8] Y. Liu, P. M. Wensing, D. E. Orin, and Y. F. Zheng: Dynamic walking in a humanoid robot based on a 3D Actuated Dual-SLIP model. Proc. of IEEE Int. Conf. on Robotics and Automation (2015), 5710–5717.
  • [9] R. C. Luo and C. C. Chen: Biped walking trajectory generator based on three-mass with angular momentum model using model predictive control. IEEE Trans. on Ind. El., 63(1) (2016), 268–276.
  • [10] K. Nishiwaki and S. Kagami: Simultaneous Planning of CoM and ZMP based on the Preview Control Method for Online Walking Control. Proc. of 11th IEEE-RAS International Conference on Humanoid Robots, 1(1) (2011), 26–28.
  • [11] P. Parulski and K. Kozlowski: Preliminary Studies on Trajectories Generation for Walking Robot Based on Human Data. 23. International Conference on Methods and Models in Automation and Robotics MMAR, 2018, 715–719.
  • [12] N. Scianca, M. Cognetti, D. De Simone, L. Lanari, and G. Oriolo: Intrinsically stable MPC for humanoid gait generation. Proc. of IEEE-RAS 16th International Conference on Humanoid Robots (2016), 601–606.
  • [13] S. E. Sovero, C. O. Saglam, and K. Byl: Passive frontal plane coupling in 3D walking. Proc. of IEEE International Conference on Intelligent Robots and Systems (2015), 1605–1611.
  • [14] K. Sreenath, H.-W. Park, I. Poulakakis, and J. W. Grizzle: A compliant hybrid zero dynamics controller for stable, efficient and fast bipedal walking on MABEL. International Journal of Robotics Research, 30(9) (2011), 1170–1193.
  • [15] M. Szumowski, M. S. Żurawska, and T. Zielinska: ZMP Preview Control Method Application for Humanoid Robot. Advances of Robotics (Postepy Robotyki), 196 (2018), 209–218 [in Polish].
  • [16] P. Tatjewski: Advanced Control of Industrial Processes, Structures and Algorithms. Springer, 2007.
  • [17] M. Vukobratovic and B. Borovac: Zero Moment Point – Thirty Five Years of Its Life. Int. Journal of Humanoid Robotics, 1(1) (2004), 157–173.
  • [18] D. A. Winter: Biomechanics and Motor Control of Human Movement. 4th Edition.Wiley, 2009.
  • [19] M. S. Żurawska, M. Szumowski, and T. Zielinska: Reconfigurable Double Inverted Pendulum Applied to theModelling of Human Robot Motion. Journal of Automation, Mobile Robotics & Intelligent Systems, 11(2) (2017), 12–20.
  • [20] "RoboCupSoccer” league description: https://www.robocup.org/domains/1, access date: 28.02.2019.
Uwagi
EN
1. This work was supported by "Diamond Grant” founded by Polish Ministry of Science and Higher Education (no 0072/DIA/2014/43), Development and testing of a method for dynamic gait synthesis with the use of a new-design robot.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5e02fb5-4323-45ff-a41d-86630bec9549
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.