Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In practice, a truss consists of a large number of members which makes it a complex system. This leads to difficulties to estimate the system reliability due to computational costs. An adaptive method is thereby proposed to deal with this issue. It constructs a global metamodel to quickly estimate the rough reliability index of a truss. According to the estimated reliability index, the differential evolution algorithm is performed to generate more samples located in an expanded domain so that more representative failure modes can be identified. Combined with AK-SYSi, local metamodels of representative failure mods are built, and updated through active learning. When the convergence criterion is satisfied, the results of system reliability analysis can be obtained. Eventually, two examples of truss structures are studied to illustrate the superiority of the proposed method in balancing accuracy and efficiency. The results indicate that the proposed method makes a good balance between accuracy and efficiency when it is applied to analyze the system reliability of the truss.
Czasopismo
Rocznik
Tom
Strony
art. no. 169497
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
autor
- Shijiazhuang Tiedao University, China
autor
- Shijiazhuang Tiedao University, China
autor
- Shijiazhuang Tiedao University, China
autor
- Shijiazhuang Tiedao University, China
Bibliografia
- 1. Au, S.-K., & Beck, J. L. (2001). Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Engineering Mechanics, 16(4), 263-277. doi:https://doi.org/10.1016/S0266-8920(01)00019-4.
- 2. Blatman, G., & Sudret, B. (2010). An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probabilistic Engineering Mechanics, 25(2), 183-197. doi:https://doi.org/10.1016/j.probengmech.2009.10.003.
- 3. Calik, N., Belen, M. A., Mahouti, P., & Koziel, S. (2021). Accurate Modeling of Frequency Selective Surfaces Using Fully-Connected Regression Model With Automated Architecture Determination and Parameter Selection Based on Bayesian Optimization. IEEE Access, 9, 38396-38410. doi:10.1109/ACCESS.2021.3063523.
- 4. Chai, W., & Leira, B. J. (2018). Environmental contours based on inverse SORM. Marine Structures, 60, 34-51. doi:https://doi.org/10.1016/j.marstruc.2018.03.007.
- 5. Chen, J., Chen, Z., Xu, Y., & Li, H. (2021). Efficient reliability analysis combining kriging and subset simulation with two-stage convergence criterion. Reliability Engineering & System Safety, 214, 107737. doi:https://doi.org/10.1016/j.ress.2021.107737.
- 6. Cui, F., & Ghosn, M. (2019). Implementation of machine learning techniques into the Subset Simulation method. Structural Safety, 79, 12-25. doi:https://doi.org/10.1016/j.strusafe.2019.02.002.
- 7. Dai, H., Zhang, H., Wang, W. J. R. E., & Safety, S. (2012). A support vector density-based importance sampling for reliability assessment. 106(106), 86-93. https://doi.org/10.1016/j.ress.2012.04.011
- 8. Dong, C. (2001 (in Chinese)). System Reliability Theories and their Applications to Modern Structures. Science Press, Beijing.
- 9. Dubourg, V., Sudret, B., & Deheeger, F. (2013). Metamodel-based importance sampling for structural reliability analysis. Probabilistic Engineering Mechanics, 33, 47-57. doi:https://doi.org/10.1016/j.probengmech.2013.02.002.
- 10. Echard, B., Gayton, N., & Lemaire, M. (2011). AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation. Structural Safety, 33(2), 145-154. doi:https://doi.org/10.1016/j.strusafe.2011.01.002.
- 11. Fauriat, W., & Gayton, N. (2014). AK-SYS: An adaptation of the AK-MCS method for system reliability. Reliability Engineering & System Safety, 123, 137-144. doi:https://doi.org/10.1016/j.ress.2013.10.010.
- 12. Gaspar, B., Teixeira, A. P., & Soares, C. G. J. P. E. M. (2014). Assessment of the efficiency of Kriging surrogate models for structural reliability analysis. 37(jul.), 24-34. https://doi.org/10.1016/j.probengmech.2014.03.011
- 13. Huang, X., Chen, J., & Zhu, H. (2016). Assessing small failure probabilities by AK–SS: An active learning method combining Kriging and Subset Simulation. Structural Safety, 59, 86-95. doi:https://doi.org/10.1016/j.strusafe.2015.12.003.
- 14. Jiang, Y., Luo, J., Liao, G., Zhao, Y., & Zhang, J. (2015). An efficient method for generation of uniform support vector and its application in structural failure function fitting. Structural Safety, 54, 1-9. doi:https://doi.org/10.1016/j.strusafe.2014.12.004.
- 15. Jiang, Y., Zhao, L., Beer, M., Wang, L., & Zhang, J. (2020). Dominant failure mode analysis using representative samples obtained by multiple response surfaces method. Probabilistic Engineering Mechanics, 59. doi:10.1016/j.probengmech.2019.103005.
- 16. Keshtegar, B., & Kisi, O. (2017). M5 model tree and Monte Carlo simulation for efficient structural reliability analysis. Applied Mathematical Modelling, 48, 899-910. doi:https://doi.org/10.1016/j.apm.2017.02.047.
- 17. Kim, D.-S., Ok, S.-Y., Song, J., & Koh, H.-M. (2013). System reliability analysis using dominant failure modes identified by selective searching technique. Reliability Engineering & System Safety, 119, 316-331. doi:10.1016/j.ress.2013.02.007.
- 18. Koziel, S., Çalık, N., Mahouti, P., & Belen, M. A. (2022). Accurate Modeling of Antenna Structures by Means of Domain Confinement and Pyramidal Deep Neural Networks. IEEE Transactions on Antennas and Propagation, 70(3), 2174-2188. doi:10.1109/TAP.2021.3111299.
- 19. Koziel, S., Çalık, N., Mahouti, P., & Belen, M. A. (2023). Reliable Computationally Efficient Behavioral Modeling of Microwave Passives Using Deep Learning Surrogates in Confined Domains. IEEE Transactions on Microwave Theory and Techniques, 71(3), 956-968. doi:10.1109/TMTT.2022.3218024.
- 20. Koziel, S., Mahouti, P., Calik, N., Belen, M. A., & Szczepanski, S. (2021). Improved Modeling of Microwave Structures Using Performance-Driven Fully-Connected Regression Surrogate. IEEE Access, 9, 71470-71481. doi:10.1109/ACCESS.2021.3078432.
- 21. Koziel, S., & Pietrenko-Dabrowska, A. (2020). Design-oriented modeling of antenna structures by means of two-level kriging with explicit dimensionality reduction. AEU - International Journal of Electronics and Communications, 127, 153466. doi:https://doi.org/10.1016/j.aeue.2020.153466.
- 22. Koziel, S., & Pietrenko-Dabrowska, A. (2020). Low-cost performance-driven modelling of compact microwave components with two-layer surrogates and gradient kriging. AEU - International Journal of Electronics and Communications, 126, 153419. doi:https://doi.org/10.1016/j.aeue.2020.153419.
- 23. Koziel, S., & Pietrenko-Dabrowska, A. (2022). Expedited Variable-Resolution Surrogate Modeling of Miniaturized Microwave Passives in Confined Domains. IEEE Transactions on Microwave Theory and Techniques, 70(11), 4740-4750. doi:10.1109/TMTT.2022.3191327.
- 24. Koziel, S., & Pietrenko-Dabrowska, A. (2022). Knowledge-based performance-driven modeling of antenna structures. Knowledge-Based Systems, 237, 107698. doi:https://doi.org/10.1016/j.knosys.2021.107698.
- 25. Koziel, S., & Pietrenko-Dabrowska, A. (2022). Tolerance-Aware Multi-Objective Optimization of Antennas by Means of Feature-Based Regression Surrogates. IEEE Transactions on Antennas and Propagation, 70(7), 5636-5646. doi:10.1109/TAP.2022.3145462.
- 26. Koziel, S., & Pietrenko-Dabrowska, A. (2022). Tolerance Optimization of Antenna Structures by Means of Response Feature Surrogates. IEEE Transactions on Antennas and Propagation, 70(11), 10988-10997. doi:10.1109/TAP.2022.3187665.
- 27. Koziel, S., Pietrenko-Dabrowska, A., & Al-Hasan, M. (2020). Design-Oriented Two-Stage Surrogate Modeling of Miniaturized Microstrip Circuits With Dimensionality Reduction. IEEE Access, 8, 121744-121754. doi:10.1109/ACCESS.2020.3006708.
- 28. Koziel, S., Pietrenko-Dabrowska, A., & Ullah, U. (2021). Low-Cost Modeling of Microwave Components by Means of Two-Stage Inverse/Forward Surrogates and Domain Confinement. IEEE Transactions on Microwave Theory and Techniques, 69(12), 5189-5202. doi:10.1109/TMTT.2021.3112156.
- 29. Koziel, S., Pietrenko-Dabrowska, A., & Ullah, U. (2022). Tolerance-Aware Optimization of Microwave Circuits by Means of Principal Directions and Domain-Restricted Metamodels. IEEE Transactions on Microwave Theory and Techniques, 70(9), 4085-4093. doi:10.1109/TMTT.2022.3193405.
- 30. Leira, B. J., Næss, A., & Brandrud Næss, O. E. (2016). Reliability analysis of corroding pipelines by enhanced Monte Carlo simulation. International Journal of Pressure Vessels and Piping, 144, 11-17. doi:https://doi.org/10.1016/j.ijpvp.2016.04.003.
- 31. Li, T. Z., Pan, Q., & Dias, D. (2021). Active learning relevant vector machine for reliability analysis. Applied Mathematical Modelling, 89, 381-399. doi:https://doi.org/10.1016/j.apm.2020.07.034.
- 32. Li, X., Yang, X., Ding, Z., Du, X., & Wen, J. (2019). ECC Design Based on Uniform Design Test Method and Alternating Conditional Expectation. Mathematical Problems in Engineering, 2019, 9575897. doi:10.1155/2019/9575897.
- 33. Marelli, S., & Sudret, B. J. E.-Z. (2015). UQLab: a framework for Uncertainty Quantification in MATLAB. https://doi.org/10.1061/9780784413609.257
- 34. Marelli, S., & Sudret, B. J. E. (2018). An active-learning algorithm that combines sparse polynomial chaos expansions and bootstrap for structural reliability analysis. https://doi.org/10.1016/j.strusafe.2018.06.003
- 35. Mazumder, R. K., Salman, A. M., & Li, Y. (2021). Failure risk analysis of pipelines using data-driven machine learning algorithms. Structural Safety, 89, 102047. doi:https://doi.org/10.1016/j.strusafe.2020.102047.
- 36. Miao, F., & Ghosn, M. (2011). Modified subset simulation method for reliability analysis of structural systems. Structural Safety, 33(4), 251-260. doi:https://doi.org/10.1016/j.strusafe.2011.02.004.
- 37. Pietrenko-Dabrowska, A., & Koziel, S. (2020). Simulation-Driven Antenna Modeling by Means of Response Features and Confined Domains of Reduced Dimensionality. IEEE Access, 8, 228942-228954. doi:10.1109/ACCESS.2020.3045755.
- 38. Pietrenko-Dabrowska, A., Koziel, S., & Golunski, L. (2022). Two-stage variable-fidelity modeling of antennas with domain confinement. Scientific Reports, 12(1), 17275. doi:10.1038/s41598-022-20495-y.
- 39. Pietrenko-Dabrowska, A., Koziel, S., & Ullah, U. (2022). Reduced-cost two-level surrogate antenna modeling using domain confinement and response features. Scientific Reports, 12(1), 4667. doi:10.1038/s41598-022-08710-2.
- 40. Sun, Z., Wang, J., Li, R., & Tong, C. (2017). LIF: A new Kriging based learning function and its application to structural reliability analysis. Reliability Engineering & System Safety, 157, 152-165. doi:https://doi.org/10.1016/j.ress.2016.09.003.
- 41. Tong, C., Sun, Z., Zhao, Q., Wang, Q., & Wang, S. (2015). A hybrid algorithm for reliability analysis combining Kriging and subset simulation importance sampling. Journal of Mechanical Science and Technology, 29(8), 3183-3193. doi:10.1007/s12206-015-0717-6.
- 42. Wang, J., Xu, G., Li, Y., & Kareem, A. (2022). AKSE: A novel adaptive Kriging method combining sampling region scheme and error-based stopping criterion for structural reliability analysis. Reliability Engineering & System Safety, 219, 108214. doi:https://doi.org/10.1016/j.ress.2021.108214.
- 43. Wang, P., Shi, H., Yang, X., & Mi, J. (2019). Three-way k-means: integrating k-means and three-way decision. International Journal of Machine Learning and Cybernetics, 10(10), 2767-2777. doi:10.1007/s13042-018-0901-y.
- 44. Wang, Z., Broccardo, M., & Song, J. (2019). Hamiltonian Monte Carlo methods for Subset Simulation in reliability analysis. Structural Safety, 76, 51-67. doi:https://doi.org/10.1016/j.strusafe.2018.05.005.
- 45. Xia, X., Gui, L., Zhang, Y., Xu, X., Yu, F., Wu, H., . . . Li, K. (2021). A fitness-based adaptive differential evolution algorithm. Information Sciences, 549, 116-141. doi:https://doi.org/10.1016/j.ins.2020.11.015.
- 46. Xiao, N.-C., Yuan, K., & Zhou, C. (2020). Adaptive kriging-based efficient reliability method for structural systems with multiple failure modes and mixed variables. Computer Methods in Applied Mechanics and Engineering, 359, 112649. doi:https://doi.org/10.1016/j.cma.2019.112649.
- 47. Xu, C. (2021). Research on Reliability Analysis Method of Structural System Based on Kriging Model. (Doctor), Harbin Engineering University (in Chinese).
- 48. Xu, C., Chen, W., Ma, J., Shi, Y., & Lu, S. (2020). AK-MSS: An adaptation of the AK-MCS method for small failure probabilities. Structural Safety, 86, 101971. doi:https://doi.org/10.1016/j.strusafe.2020.101971.
- 49. Yun, W., Lu, Z., Zhou, Y., & Jiang, X. (2019). AK-SYSi: an improved adaptive Kriging model for system reliability analysis with multiple failure modes by a refined U learning function. Structural and Multidisciplinary Optimization, 59(1), 263-278. doi:10.1007/s00158-018-2067-3.
- 50. Zhang, C., Wang, Z., & Shafieezadeh, A. (2021). Error Quantification and Control for Adaptive Kriging-Based Reliability Updating with Equality Information. Reliability Engineering & System Safety, 207, 107323. doi:https://doi.org/10.1016/j.ress.2020.107323.
- 51. Zhao, Y.-G., & Ono, T. (1998). System Reliability Evaluation of Ductile Frame Structures. Journal of Structural Engineering, 124(6), 678-685. doi:10.1061/(ASCE)0733-9445(1998)124:6(678).
- 52. Zhou, C., Xiao, N.-C., Zuo, M. J., & Gao, W. (2022). An improved Kriging-based approach for system reliability analysis with multiple failure modes. Engineering with Computers, 38(3), 1813-1833. doi:10.1007/s00366-021-01349-z.
- 53. Zuev, K. M., & Katafygiotis, L. S. (2011). Modified Metropolis–Hastings algorithm with delayed rejection. Probabilistic Engineering Mechanics, 26(3), 405-412. doi:https://doi.org/10.1016/j.probengmech.2010.11.008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5d3dac6-c664-4283-8c62-a4eeb0b53070