PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the factors determining thermal comfort and occupational health conditions of employees in multi-storey business buildings in the light of expert experiences

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Previous studies generally focused on the indoor temperature of buildings and air supplies to their environment. The effect of outdoor pollutants on thermal conditions has also attracted some interest in recent years. However, the number of studies on other factors that may potentially affect thermal comfort and health in high-rise buildings is limited. A structured analytical hierarchy process and an improved data envelopment analysis method are used in this study to determine the indoor and outdoor spatial features and climatic effects that influence thermal comfort in multi-storey business buildings. The impact levels of these factors on thermal conditions are determined with heuristic algorithms. Further, two climate zones in two countries are compared in terms of the factors that affect thermal comfort and their individual impact levels. The most critical criterion for Kuwait is external insulation features, whereas for Turkey it is indoor air conditioning. The most critical sub-criterion is temperature for Kuwait, whereas for Turkey it is insufficient heat and light insulation of windows. Data envelopment analysis yields that respiratory health diseases are the most critical effect in Kuwait, and work accidents are the most important effect in Turkey. Temperature and humidity play a significant role in thermal comfort in Kuwait. Insulation and air conditioning are crucial factors in thermal comfort conditions in Turkey.
Rocznik
Strony
art. no. e152215
Opis fizyczny
Bibliogr. 27 poz., tab.
Twórcy
autor
  • American College of the Middle East, Department of Engineering and Technology, Kuwait
autor
  • Bandirma Onyedi Eylul University, Department of Labor Economics and Industrial Relations, Turkey
Bibliografia
  • [1] P.L. Ooi and K.T. Goh, “Sick-building syndrome in a tropical city,” Lancet, vol. 347, no. 9004, pp. 841–842, 1996, doi: 10.1016/S0140-6736(96)90927-7.
  • [2] C. Lu, Q. Deng, Y. Li, J. Sundell, and D. Norbäck, “Outdoor air pollution, meteorological conditions and indoor factors in dwellings in relation to sick building syndrome (SBS) among adults in China,” Sci. Total Environ., vol. 560–561, pp. 186–196, Aug. 2016, doi: 10.1016/J.SCITOTENV.2016.04.033.
  • [3] M. Gomzi et al., “Sick Building Syndrome: Psychological, Somatic, and Environmental Determinants,” Arch. Environ. Occup. Health, vol. 62, no. 3, pp. 147–155, Sep. 2007, doi: 10.3200/AEOH.62.3.147-155.
  • [4] W.T. Piver, M. Ando, F. Ye, and C.J. Portier, “Temperature and air pollution as risk factors for heat stroke in Tokyo, July and August 1980–1995.,” Environ. Health Perspect., vol. 107, no. 11, pp. 911–916, 1999, doi: 10.1289/ehp.99107911.
  • [5] G. Zheng, N. Zhu, Z. Tian, Y. Chen, and B. Sun, “Application of a trapezoidal fuzzy AHP method for work safety evaluation and early warning rating of hot and humid environments,” Saf. Sci., vol. 50, no. 2, pp. 228–239, Feb. 2012, doi: 10.1016/J.SSCI.2011.08.042.
  • [6] A. Coco, B. Jacklitsch, J. Williams, J.-H. Kim, K. Musolin, and N. Turner, “Criteria for a recommended standard: occupational exposure to heat and hot environments,” DHHS (NIOSH) Publ., 2016–106. [Online] Available: https://www.cdc.gov/niosh/docs/2016-106/default.html
  • [7] E.K. O’Neal and P. Bishop, “Effects of work in a hot environment on repeated performances of multiple types of simple mental tasks,” Int. J. Ind. Ergon., vol. 40, no. 1, pp. 77–81, Jan. 2010, doi: 10.1016/J.ERGON.2009.07.002.
  • [8] L. Lan, P. Wargocki, D.P. Wyon, and Z. Lian, “Effects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses, and human performance,” Indoor Air., vol. 21, no. 5, pp. 376–390, Oct. 2011, doi: 10.1111/j.1600-0668.2011.00714.x.
  • [9] Y. Jiao, X. Wang, Y. Kang, Z. Zhong, and W. Chen, “A quick identification model for assessing human anxiety and thermal comfort based on physiological signals in a hot and humid working environment,” Int. J. Ind. Ergon., vol. 94, p. 103423, Mar. 2023, doi: 10.1016/J.ERGON.2023.103423.
  • [10] X. Shi, N. Zhu, and G. Zheng, “The combined effect of temperature, relative humidity and work intensity on human strain in hot and humid environments,” Build. Environ., vol. 69, pp. 72–80, Nov. 2013, doi: 10.1016/J.BUILDENV.2013.07.016.
  • [11] L. Lan, P. Wargocki, and Z. Lian, “Quantitative measurement of productivity loss due to thermal discomfort,” Energy Build., vol. 43, no. 5, pp. 1057–1062, May 2011, doi: 10.1016/J.ENBUILD.2010.09.001.
  • [12] H.R. Lieberman, G.P. Bathalon, C.M. Falco, F.M. Kramer, C.A. Morgan III, and P. Niro, “Severe decrements in cognition function and mood induced by sleep loss, heat, dehydration, and undernutrition during simulated combat,” Biol. Psychiatry, vol. 57, no. 4, pp. 422–429, Feb. 2005, doi: 10.1016/j.biopsych.2004.11.014.
  • [13] P.A. Hancock and I. Vasmatzidis, “Effects of heat stress on cognitive performance: the current state of knowledge,” Int. J. Hyperthermia, vol. 19, no. 3, pp. 355–372, May 2003, doi: 10.1080/0265673021000054630.
  • [14] B. Fernández-Muńiz, J.M. Montes-Peón, and C.J. Vázquez-Ordás, “Safety management system: Development and validation of a multidimensional scale,” J. Loss Prev. Process Ind., vol. 20, no. 1, pp. 52–68, Jan. 2007, doi: 10.1016/J.JLP.2006.10.002.
  • [15] S. Zhang, N. Zhu, and S. Lv, “Human response and productivity in hot environments with directed thermal radiation,” Build. Environ., vol. 187, p. 107408, Jan. 2021, doi: 10.1016/J.BUILDENV.2020.107408.
  • [16] Y. Wang, K. Liu, Y. Liu, D. Wang, and J. Liu, “The impact of temperature and relative humidity dependent thermal conductivity of insulation materials on heat transfer through the building envelope,” J. Build. Eng., vol. 46, p. 103700, Apr. 2022, doi: 10.1016/J.JOBE.2021.103700.
  • [17] J. Dai, J. Wang, D. Bart, and W. Gao, “The impact of building enclosure type and building orientation on indoor thermal comfort – A case study of Kashgar in China,” Case Stud. Therm. Eng., vol. 49, p. 103291, Sep. 2023, doi: 10.1016/J.CSITE.2023.103291.
  • [18] M. Martínez-Comesańa, A. Ogando-Martínez, F. Troncoso-Pastoriza, J. López-Gómez, L. Febrero-Garrido, and E. Granada-Álvarez, “Use of optimised MLP neural networks for spatiotem-poral estimation of indoor environmental conditions of existing buildings,” Build. Environ., vol. 205, p. 108243, Nov. 2021, doi: 10.1016/J.BUILDENV.2021.108243.
  • [19] N. Ma, D. Aviv, H. Guo, and W.W. Braham, “Measuring the right factors: A review of variables and models for thermal comfort and indoor air quality,” Renew. Sustain. Energy Rev., vol. 135, p. 110436, Jan. 2021, doi: 10.1016/J.RSER.2020.110436.
  • [20] M. Hu, K. Zhang, Q. Nguyen, and T. Tasdizen, “The effects of passive design on indoor thermal comfort and energy savings for residential buildings in hot climates: A systematic review,” Urban Clim., vol. 49, p. 101 466, May 2023, doi: 10.1016/J.UCLIM.2023.101466.
  • [21] D. Podgórski, “Measuring operational performance of OSH management system – A demonstration of AHP-based selection of leading key performance indicators,” Saf. Sci., vol. 73, pp. 146–166, Mar. 2015, doi: 10.1016/J.SSCI.2014.11.018.
  • [22] S. Alp, F. Yilmaz and E. Gecici, “Evaluation of the Quality of Health and Safety Services with SERVPERF and Multi-Attribute Decision-Making Methods,” Int. J. Occup. Saf. Ergo, vol. 28, no. 4, pp. 2216–2226, 2022, doi: 10.1080/10803548.2021.1984711.
  • [23] F. Yilmaz and M.S. Ozcan. “Risk Analysis and Ranking Application for Lifting Vehicles Used in Construction Sites with Integrated AHP and Fine-Kinney Approach,” Adv. Sci. Tech. Res. J., vol. 13, no. 3, pp. 152–161, 2019, doi: 10.12913/22998624/111779.
  • [24] M. Gul and A.F. Guneri, “Use of FAHP for Occupational Safety Risk Assessment: An Application in the Aluminum Extrusion Industry,” in Fuzzy analytic hierarchy process, 1𝑠𝑡 Edition, Chapman and Hall/CRC, Sep. 2017, pp. 249–272.
  • [25] F. Yilmaz, S. Alp, B. Oz, and A. Alkoc, “Analysis of the Risks arising from Fire Installations in Workplaces using the Ranking Method,” Eng. Tech. Appl. Sci. Res., vol. 10, no. 4, pp. 5914–5920, 2020, doi: 10.48084/etasr.3646.
  • [26] J. Shin, Y. Kim, and C. Kim, “The Perception of Occupational Safety and Health (OSH) Regulation and Innovation Efficiency in the Construction Industry: Evidence from South Korea,” Int. J. Environ. Res. Public Heal., vol. 18, no. 5, p. 2334, Feb. 2021, doi: 10.3390/IJERPH18052334.
  • [27] J. Zhang, Q. Mei, S. Liu, and Q. Wang, “Study on the Influence of Government Intervention on the Occupational Health and Safety (OHS) Services of Small- and Medium-Sized Enterprises (SMEs),” Biomed. Res. Int., vol. 2018, p. 5014859, 2018, doi: 10.1155/2018/5014859.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5d1d602-5dca-4fe4-9f11-2d210e3c9bad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.