PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimates for the Poisson kernels on homogeneous manifolds of negative curvature and the boundary Harnack inequality in the noncoercive case

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using a probabilistic technique we obtain upper and lower estimates for the Poisson kernels of the second order differential operators on a homogeneous manifold of negative curvature. Our results improve estimates obtained in the paper [5]. Moreover, for the noncoercive operator we proved the boundary Harnack inequality which turned out to be the same as in the coercive case.
Rocznik
Strony
213--229
Opis fizyczny
Biblogr. 16 poz
Twórcy
autor
  • Institute of Mathematics Wrocław University, pl. Grunwaldzki 2/4, 50-384 Wroclaw, Poland
Bibliografia
  • [1] A. Ancona, Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. of Math. 125 (1987), pp. 495-536.
  • [2] A. N. Borodin and P. Salmi nen, Handbook of Brownian Motion - Facts and Formulae, Birkhäuser Verlag, 1996.
  • [3] E. Damek, Fundamental solutions of differential operators on homogeneous manifolds of negative curvature and related Riesz transforms, Colloq. Math. 73 (2) (1997), pp. 229-249.
  • [4] E. Damek and A. Hulanicki, Maximal functions related to subelliptic operators invariant under an action of nilpotent subgroup, Studia Math. 103 (3) (1992), pp. 239-264.
  • [5] E. Damek, A. Hulanicki and R. Urban, Martin boundary for homogeneous Riemannian manifolds of negative curvature at the bottom of the spectrum, Rev. Mat. Iberoamericana (to appear).
  • [6] E. Damek, A. Hulanicki and J. Zienkiewicz, Estimates for the Poisson kernels and their derivatives on rank one NA groups, Studia Math. 126 (2) (1997), pp. 115-148.
  • [7] L. Élie, Comportement asymptotique du noyau potentiel sur les groupes de lie, Ann. Scient. École Norm. Sup. (4) (1982), pp. 257-364.
  • [8] G. B. Foil and and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982.
  • [9] Y. Guivarc’h, Sur la loi des grands nombres et la rayon spectral d’une marche aléatoire, in: Journées sur les marches aléatoires, Vol. 74, Astérisque, 1980, pp. 47-98.
  • [10] E. Heintze, On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974), pp. 23-34.
  • [11] N. N. Lebedev, Special Functions and Their Applications, Dover Publications, Inc., 1972.
  • [12] R. Penney and R. Urban, Unbounded harmonic functions on homogeneous manifolds of negative curvature, Colloq. Math, (to appear).
  • [13] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer, 1991.
  • [14] H. Tanabe, Equations of Evolutions, Pitman, London 1979.
  • [15] R. Urban, Noncoercive differential operators on homogeneous manifolds of negative curvature and their Green functions, Colioq. Math. 88 (1) (2001), pp. 121-134.
  • [16] R. Urban, Estimates for the Poisson kernels on NA groups. A probabilistic method, PhD Thesis, Wrocław University, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5cfc0c9-7f6e-4d66-a1e3-59e572f2d902
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.