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receptor, the androgen receptor, and the thyroid hormone
receptor. Here, crosstalk is categorized as bidirectional or
unidirectional, with the latter category further subdivided into
ligand-dependent or –independent crosstalk. More research
needs to be done to develop a clearer understanding of the
involvement of receptor crosstalk in cell signaling that is induced
by endocrine disruptors. This understanding will help to develop
in vitro and in silico assays that can replace animal tests.

ABSTRACT

Endocrine disruptors interfere with hormonal action through
receptors and signaling pathways, but receptor crosstalk
involved in the actions of endocrine disruptors has not yet been
well documented. This review summarizes what is known about
the actions of endocrine disruptors through receptor crosstalk,
focusing on three model cases: crosstalk involving the estrogen
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ABBREVIATIONS

AhR aryl hydrocarbon receptor
AR androgen receptor

CCR C-C chemokine receptor
CREB cAMP response element-binding protein

DDE dichlorodiphenyldichloroethylene
DDT dichlorodiphenyltrichloroethane
DEHP di-(2-ethylhexyl)-phthalate
DMBA 7,12-dimethylbenz[a]anthracene

E2 17β-estradiol
EGF epidermal growth factor
EGFR epidermal growth factor receptor 
ER estrogen receptor
ERK extracellular-signal-regulated kinase
ERR estrogen-related receptor
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GF growth factor
GPCR G protein-coupled receptor
GPER G protein-coupled estrogen receptor 1

hCG human chorionic gonadotropin
HDAC1 histone deacetylase 1
HER2 human EGFR2

IFN interferon
IGF-1 insulin-like growth factor 1
IGF-1R insulin-like growth factor 1 receptor
IL-6R interleukin 6 receptor

LXR liver X receptor

MAPK mitogen-activated protein kinase
MNAR modulator of non-genomic action of estrogen receptor
mTOR mammalian target of rapamycin

ObR leptin receptor

PI3K phosphoinositide 3-kinase
PPAR peroxisome proliferator-activated receptor
PR progesterone receptor
pRb retinoblastoma protein
PXR pregnane and xenobiotic receptor
p-XSC 1,4-phenylenebis(methylene)selenocyanate

RAR retinoic acid receptor

T3 3,5,3'-triiodo-L-thyronine
TAM tamoxifen
TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin
TGF-β transforming growth factor β
TNF-α tumor necrosis factor-α
TR thyroid hormone receptor
TR4 testicular orphan receptor 4
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IN TRO DUC TION

Endocrine disruptors are defined as “an exogenous chemical, or
mixture of chemicals, that can interfere with any aspect of
hormone action” (Zoeller et al. 2012). They are present outside
of organisms (i.e. they are xenobiotics) and affect the production,
release, transport, metabolism, binding, and elimination of
natural hormones in the body, which are responsible for
maintaining homeostasis and regulating developmental
processes (Kavlock et al. 1996). Definitions differ as to what
constitutes an endocrine disruptor, based on the kinds of adverse
outcomes that are stipulated (Schug et al. 2012). The assessment
of endocrine disruptors was initiated with mainly estrogenic
chemicals and subsequently expanded to include androgenic and
thyroid-hormone–like chemicals (Tabb and Blumberg 2006).
Estrogenic, androgenic, and thyroid-hormone–like chemicals
were initially recommended for tiered testing of their endocrine
disrupting actions (Charles 2004), and this approach is also used
in recent endocrine disruptor studies (Du et al. 2010; Hu et al.
2011; Scholz et al. 2013; Sun et al. 2012).

In the face of skepticism (Safe 2000) and controversies
(Vandenberg et al. 2009) surrounding the actions of
endocrine disruptors, concerted efforts have been made in
the past few decades to elucidate the underlying mechanisms
of their effects. It is a challenge to demonstrate the
endogenous effects of these substances because of difficulties
specifying the animals, the outcomes, and the strength of the
effects required for the assessment. However, a deeper
understanding of the mechanisms of endocrine disruption is
not only interesting from a scientific point of view, but
important for reducing or refining animal tests, or even
replacing them with in vitro or in silico assays (reviewed in
Kiyama et al. 2014; Kiyama and Wada-Kiyama 2015).

Information on the molecular mechanisms underlying the
actions of endocrine disruptors is very limited due to the variety
of chemicals and the complexity of the molecular mechanisms
to be examined; this is particularly the case when the
mechanisms involve multiple actions of endocrine-disrupting
chemicals and a large number of intracellular and/or
intercellular signaling pathways. Many of the hundreds of
thousands of chemicals around us have not yet been examined
toxicologically, and the complexities of the cell signaling
pathways induced by these chemicals currently remain unclear.

Interest in receptor-mediated crosstalk between
signaling pathways and hormone/growth factor (GF)
networks is increasing due to advances in the development
of biotechnological methods, tools, and devices. Crosstalk has
been described at various levels, for example, in homeostatic
interactions (Benmouloud et al. 2014), cell functional
interactions (Le et al. 2014), cell-cell interactions (Hollmén et
al. 2015; Lu et al. 2012), interactions among cellular apparatuses
(Totta et al. 2014), interactions between genomic and non-
genomic pathways (Michels and Hoppe 2008; Silva et al. 2010),
interactions between signal mediators (Bratton et al. 2012), and
receptor interactions (Ernst et al. 2014). Receptor-mediated
crosstalk involves receptors and their signal mediators. 

Here, we focus on receptor crosstalk involved in the actions
of endocrine disruptors, which has not yet been examined in
detail. For example, bisphenol A, a well-studied endocrine
disruptor, is known to interact with various receptors, such as
estrogen receptor α (ERα), ERβ, estrogen-related
receptor γ (ERRγ), membrane-bound ER, G-protein–coupled
estrogen receptor 1 (GPER), aryl hydrocarbon receptor
(AhR), thyroid hormone receptor (TR), and androgen
receptor (AR) (Schug et al. 2012), suggesting that there is
either direct crosstalk between signaling pathways or at least
broad functional associations or interactions between them. 

Figure 1. Simplified diagrams of receptor crosstalk.
Diagrams of receptor crosstalk, involving ligands (L), receptors
(R), signal-mediating proteins (P), and functional outcomes (O)
for two different signaling pathways (types a and b), are
categorized by the direction (bi- or unidirectional) and also by
the involvement of additional ligands/receptors. Solid arrows
indicate simplified pathways, while hatched arrows indicate
potential pathways (not necessarily existing). The pathways
affecting outcomes are shown in red.

Receptor crosstalk has been categorized into bidirectional
and unidirectional signaling pathways, in which signaling
among ligands (La and Lb), receptors (Ra and Rb), signal-
mediating proteins (Pa and Pb), and functional outcomes (Oa
and Ob) are involved (Figure 1). Cases of bidirectional
signaling pathways have been reported (Giuliano et al. 2013;
Thorne and Lee 2003), such as those between the ER, AR,
and TR, between just two of these receptor-mediated
signaling pathways, or between one of them and other
hormone/GF signaling pathways. Unidirectional signaling
pathways, in which a particular hormone response is affected
unidirectionally by other hormones/GFs (type U1 in
Figure 1), have also been described (Bratton et al. 2012;
Garay et al. 2012). Unidirectional crosstalk may be regarded
as ligand-independent crosstalk (type U2), in which the
receptors activated in a ligand-independent manner crosstalk
with other signaling pathways (Culig 2004; Thorne and Lee
2003). Mutations or epigenetic alterations may change the
status of receptors and/or their signal mediators, further
affecting hormone signaling and its outcomes. The directions
of crosstalk involving the ER, AR, and TR are discussed in
the section “Directionality of crosstalk”.
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OUTLINE OF RECEPTOR CROSSTALK
Receptor-mediated mechanisms underlying 
endocrine disruptor actions 
Estrogens, androgens, and thyroid hormones are considered to
be involved in the actions of endocrine disruptors; however,

other hormones may be involved, such as those secreted by the
hypothalamus, pituitary gland, and pancreas (Khetan 2014).
These hormones collaborate with other hormones and
cytokines/GFs inside or outside cells in homeostatic networks, in
which receptor crosstalk plays an important role. 

Table 1. Summary of receptor crosstalk.

Crosstalk between Function analyzed or Reference 
receptors/pathways subject examined (reviews)

ER
ER:AhR Endocrine disruptor action/antiestrogenicity Safe et al. 1998; Safe and Wormke 2003
ER:Cytokine/GF signaling Breast cancer Massarweh and Schiff 2006; Osborne et al. 2005; 

Schiff et al. 2005; Thakkar and Mehta 2011
ER:Cytokine/GF signaling Hormone-regulated transcription Smith 1998
ER:Cytokine/GF signaling Lung cancer Stabile and Siegfried 2004
ER:Cytokine/GF signaling Target for selective estrogen receptor modulators Härkönen and Väänänen 2006
ER:ERRα signaling Therapeutic target in cancer Stein and McDonnell 2006
ER:HER2 signaling Breast cancer Bender and Nahta 2008; Giuliano et al. 2013; Johnston 2006; 

Nahta and O'Regan 2012; Osborne and Schiff 2011
ER:HER family signaling Endocrine-resistant tumor growth Arpino et al. 2008
ER:IGF-1 signaling Breast cancer Fagan and Yee 2008; Lanzino et al. 2008; Surmacz and 

Bartucci 2004; Thorne and Lee 2003; 
ER:MNAR signaling Estrogen-induced cardio-/neuro-/osteo-protection Cheskis et al. 2008
ER:NF-κB signaling Inflammation Harnish 2006
ER:NF-κB signaling Endocrine-resistant breast cancer Zhou et al. 2005
ER:PI3K/Akt/mTOR signaling Cancer cell proliferation/metabolism/survival Fu et al. 2013
ER:PR signaling Regulation of gene expression/cell proliferation Katzenellenbogen 2000
ER:TGF-β signaling Breast cancer Band and Laiho 2011
ER-α36:Other ER signaling Breast cancer Wang and Yin 2015
GPER:Other ER signaling Breast cancer Barton 2012

AR
AR:Cytokine/GF signaling Prostate cancer Koochekpour 2010; Mellado et al. 2009, 2013
AR:EGFR signaling Prostate cancer Bonaccorsi et al. 2008
AR:ER signaling Breast cancer Fioretti et al. 2014
AR:IL-6 signaling Prostate cancer Culig 2004
AR:Notch signaling Prostate cancer Villaronga et al. 2008
AR:PI3K/Akt signaling Prostate cancer Wang et al. 2007
AR:PI3K, pRb, Prostate cancer Georgi et al. 2014

Ras/Raf/MAPK/ERK signaling
AR:PI3K/Akt, MAPK, Prostate cancer Zhang et al. 2011

Wnt/β-catenin signaling
AR:Prolactin receptor Prostate cancer Goffin et al. 2011
AR:Redox signaling Prostate cancer Rajendran et al. 2010
AR:TGF-β signaling Prostate cancer Zhu and Kyprianou 2005
AR:Wnt/β-catenin signaling Prostate cancer Verras and Sun 2006
AR:Wnt/β-catenin signaling Cell growth/proliferation/differentiation/apoptosis Beildeck et al. 2010

TR
TR:ER Endocrine disruptor Zhang and Trudeau 2006
TR:PPARs Fatty acid catabolism/inflammatory response Hihi et al. 2002
TR:Steroid hormone receptors Endocrine disruptor Duarte-Guterman et al. 2014

*Abbreviations; AhR: aryl hydrocarbon receptor; AR: androgen receptor; EGFR: epidermal growth factor receptor (HER1 in
humans); ER: estrogen receptor; ERK: extracellular-signal-regulated kinase; ERR: estrogen-related receptor; GF: growth factor;
GPER: G protein-coupled estrogen receptor 1; HER2: human EGFR2; IGF-1: insulin-like growth factor 1; IGF-1R: insulin-like
growth factor 1 receptor; MAPK: mitogen-activated protein kinase; MNAR: modulator of non-genomic action of estrogen receptor;
mTOR: mammalian target of rapamycin; PI3K: phosphoinositide 3-kinase; PPAR: peroxisome proliferator-activated receptor; PR:
progesterone receptor; pRb: retinoblastoma protein; TGF-β: transforming growth factor β; TR: thyroid hormone receptor.
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Studies on receptor crosstalk are summarized in Table 1.
Table 1 includes early studies on signal transduction, which
are useful for examining the outline of receptor crosstalk
although they sometimes lack details about mediators and
the types of crosstalk. Reviews with comprehensive lists of
references are available that describe crosstalk between the
ER, AR, or TR and other signaling pathways. These other
signaling pathways are initiated or mediated by receptors,
such as the AhR, ERRα, the epidermal growth factor
receptor (EGFR), HER2, Notch, peroxisome proliferator-
activated receptors (PPARs), the progesterone receptor
(PR), and prolactin receptor; or by cytokines/GFs, such as
insulin-like growth factor 1 (IGF-1), interleukin 6 (IL-6), and
transforming growth factor β (TGF-β); or by signal-related
proteins, such as NF-κB, phosphoinositide 3-kinase
(PI3K)/Akt/mTOR, Retinoblastoma protein (pRb), Ras/Raf/
mitogen-activated protein kinase (MAPK)/ERK, redox
proteins, and Wnt/β-catenin. These signaling pathways are
associated with cancer (such as breast, lung, and prostate
cancers), cellular functions/responses (such as cell
growth/proliferation/differentiation/apoptosis, inflammation,
and metabolism), endocrine disruptor actions, functional
regulation (such as transcriptional and expressional regulation),
and drug targets (such as those for selective estrogen
receptor modulators and therapeutic targets).

Crosstalk involving the ER
Estrogen is a female hormone that is responsible for
menstrual and estrous reproductive cycles. The signals
induced by estrogens and estrogenic endocrine disruptors are
mediated by ERs, which comprise nuclear ERs, ERα and
ERβ, membrane ERs (such as GPER and ERX), and variant
ERs (such as ERα-36) (Kiyama and Wada-Kiyama 2015). In
the genomic pathway, these ERs function as transcription
factors that up-regulate or down-regulate the expression of
target genes; in the non-genomic pathway, they function as
signal mediators that activate or suppress estrogen signaling
via crosstalk with other receptors, often forming extracellular
networks with the same cell, nearby cells, or distant cells.

Of the papers on crosstalk and ER-mediated signaling that
we review here, those that concern breast cancer comprise the
largest group. These papers discuss crosstalk involving the ER
and cytokines, GFs, and receptors (Table 1), as well as
therapeutic strategies for endocrine-resistant, GF-activated
cancers, such as cancers with activated HER2 (human
EGFR2), and ER-positive and PR-negative cancer (Massarweh
and Schiff 2006; Osborne et al. 2005; Schiff et al. 2005; Thakkar
and Mehta 2011). Estrogen and other hormones/GFs regulate
apoptosis and other cell functions through two major pathways:
the PI3K/Akt and Ras/MEK/ERK pathways, in normal breast
cells (Nahta and O'Regan 2012), and this regulation is
abolished by the depletion of receptor functions, resulting in
the deregulation of these pathways and substitution with other
signaling pathways, along with the constitutive activation of
growth- and cell cycle-regulating pathways through receptor
crosstalk in cancer cells.

Crosstalk between the ER and HER2 has been associated
with breast cancer (Bender and Nahta 2008; Giuliano et al.
2013; Johnston 2006; Nahta and O'Regan 2012; Osborne and
Schiff 2011), and endows cells with endocrine resistance, such
as that by selective estrogen receptor modulators (SERMs).
HER2 is a member of the HER family of proteins, which
includes HER1 (or EGFR), HER3, and HER4; it exhibits
receptor tyrosine kinase activity; and it contributes to
tumorigenesis by forming complexes with or phosphorylating
HER3 (Bender and Nahta 2008). Intercellular small-
molecule inhibitors against breast cancer have been
developed based on the signaling pathways identified to date
(Johnston 2006). Bidirectional crosstalk between ER and
HER2 may require the simultaneous blocking of both
signaling pathways (Giuliano et al. 2013). Thus, information
on receptor crosstalk provides oncologists with the
opportunity to develop effective strategies that block,
downgrade, or deprive receptor functions, and, because of
the absence of appropriate targets, triple-negative (ER-,
HER2- and PR-) breast cancer has the poorest prognosis
(Thakkar and Mehta 2011).

Additional crosstalk involving ERs has been discussed in
association with specific cell functions, such as the regulation
of gene expression (at the levels of transcription, translation,
transport, and further processing/metabolism/degradation)
and cell growth/proliferation as well as specific physiological
outcomes, such as anti-estrogenicity, inflammation, and
cardio-/neuro-/osteo-protection, in which the pathways for
various hormones (including membrane and variant ERs),
cytokines, GFs, and signal mediators, such as AhR, ERRα,
IGF-1, NF-κB, and TGF-β signaling, are involved (Table 1).
Information on crosstalk has been used in order to identify
new targets for cancer treatments (combination treatments
for breast cancer using inhibitors of ERRα, IGF-1, or TGF-β
signaling; Band and Laiho 2011; Fagan and Yee 2008; Stein
and McDonnell 2006), hormone therapy (suppression of
estrogen-mediated functions by membrane/variant ERs;
Barton 2012; Wang and Yin 2015) and drug development
(drugs for the treatment of pathogenic inflammation;
Harnish 2006), or to identify prognostic markers (NF-κB
activity for breast cancer; Zhou et al. 2005) . 

Crosstalk involving the AR
The AR is a nuclear receptor, and like the ER, the AR also has
two known modes of action: genomic and non-genomic. In the
genomic mode, the AR binds with the physiological androgens,
testosterone or dihydrotestosterone, in the cytoplasm. After this,
it is translocated into the nucleus, where it acts as a transcription
factor that controls the expression of the genes critical for the
development and maintenance of the male sexual phenotype
(Mooradian et al. 1987; Roy et al. 1999). In the non-genomic
mode, membrane ARs rapidly activate kinase-signaling pathways,
such as the MAPK signaling pathway, but do not directly regulate
gene transcription (Heinlein and Chang 2002; Wang et al. 2014).
Androgenic endocrine disruptors include industrial chemicals,
such as bisphenol A, dichlorodiphenyltrichloroethane (DDT),
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dichlorodiphenyldichloroethylene (DDE), diphenylmethanes,
methoxychlor, organochlorines, and phthalates (Luccio-Camelo
and Prins 2011). These endocrine disruptors interfere with the
biosynthesis, metabolism, and/or effects of androgens, resulting in
abnormal male development and abnormal growth and function
of the reproductive tract.

Prostate cancer is associated with crosstalk between the
AR and receptor-mediated pathways, such as the EGFR
pathway, cytokines and growth factors, or other signaling
pathways, including the IL-6, Notch, PI3K/Akt, pRb,
Ras/Raf/MAPK/ERK, redox, TGF-β, and Wnt/β-catenin
signaling pathways (Table 1). Carcinogenesis and
metastatic or androgen-independent (castration-resistant)
progression of prostate cancer involve crosstalk between
the AR and growth factors, neurotrophic peptides,
cytokines or non-androgenic hormones (Koochekpour
2010; Mellado et al. 2009, 2013). This type of crosstalk is
associated with somatic and germline mutations in the AR,
such as those detected in its ligand-binding and DNA-
binding domains. This crosstalk can be classified into three
categories: 1) the AR interacts with other receptors, such
as EGFR, at the plasma membrane (Bonaccorsi et al.
2008); 2) the AR interacts with β-catenin in the nucleus
(Verras and Sun 2006; Zhang et al. 2011), 3) the AR is
activated in a ligand-independent manner by MAPK or
other signal mediators in response to IL-6 (Culig 2004).
The growth of androgen-independent prostate cancer may
be induced by the overexpression of HER2, a receptor
tyrosine kinase, and advanced androgen-independent
prostate cancer has been associated with deregulation of
the Wnt/β-catenin pathway (Zhang et al. 2011). In both of
these cases, crosstalk may occur in many locations: in the
intracellular space, at the cell membrane, in the cytoplasm,
and within the nucleus (Beildeck et al. 2010). In addition,
the crosstalk of the AR with female hormones, such as
prolactin (Goffin et al. 2011) and estrogen (Fioretti et al.
2014), through their receptor-mediated pathways plays
significant roles in the initiation, progression, and
malignancy of cancer.

Crosstalk involving the TR
Thyroid hormone plays significant roles in lipid/glucose
metabolism and the development of tissues in the nervous,
skeletal, pulmonary, and cardiovascular systems. A key step in
its regulation is the activation of the prohormone, thyroxine
(T4), to the active form, triiodothyronine (T3) (Brent 2012;
Cheng et al. 2010; Harvey and Williams 2002; Mullur et al. 2014;
Yen 2001). The TR has two isoforms, TRα and TRβ, which are
differentially expressed in tissues and have distinct roles in
thyroid hormone signaling. Crosstalk between the TR and other
receptors or signaling pathways has been investigated in
association with metabolic processes, such as basal/adaptive
metabolism, bile acid/cholesterol/fatty acid syntheses, and
glucose metabolism (Liu and Brent 2010). Evidence for
crosstalk between the TR and steroid hormone receptors is
increasing, suggesting that it plays a role in gonad differentiation

and reproductive function. Thyroid hormone may modulate the
transcriptional levels of genes for the enzymes that synthesize
estrogens and androgens; thyroid hormone can also modulate
the activity of these enzymes (Duarte-Guterman et al. 2014).
The actions of nuclear receptors, like the TR, may be affected
by the rapid actions of membrane receptors that have interacted
with endocrine disruptors (Zhang and Trudeau 2006). The TR
has been reported to be involved in the negative regulation of
fatty acid metabolism by PPARs, such as when thyroid hormone
inhibits the PPAR-regulated expression of the rat peroxisomal
enoyl-CoA hydratase/3-hydroxiacyl-CoA dehydrogenase gene
(Hihi et al. 2002).

PATHWAYS MEDIATING RECEPTOR CROSSTALK

Cell signaling pathways mediating receptor crosstalk
Recent technological advances have enabled detailed analyses of
the pathways mediating receptor crosstalk. Findings on receptor
crosstalk involving ER, AR and TR signaling are summarized in
Table 2, where they are categorized by chemicals (such as
ligands/modulators/inhibitors/stimulators), pathways/crosstalk,
types of crosstalk, and functions/subjects. Recent studies are
highlighted here because of the development of biotechnological
tools and methods that have enabled us to examine the pathways
in detail.

In the ER-associated pathways, ER ligands induce signals
after binding to nuclear (ERs) or membrane (GPER)
receptors. These ligands include natural and synthetic
estrogens/ER antagonists (E2, G-1, fulvestrant, and
tamoxifen) and synthetic estrogenic chemicals (bisphenol A,
nonylphenol, phthalates, and zearalenone). Crosstalk has
been reported between the ER signaling pathway and other
pathways involving specific receptors like the AhR,
chemokine receptors (CCRs and CXCR1), EGFR, HER2
(ErbB2), insulin-like growth factor 1 receptor (IGF-1R),
interleukin 6 receptor (IL-6R), Nur77, leptin receptor
(ObR), PPARα, and TGF-βR, and between the ER signaling
pathway and other signaling pathways involving unspecified
receptors, such as the c-Fos/c-Jun/AP-1, MAPK, PI3K/Akt/
mTOR, and Wnt/β-catenin pathways (Table 2). These
pathways have been implicated mainly in breast, endometrial,
and ovarian cancers, although they are associated with other
types of cancers (lung and prostate cancers) and with
physiological functions, such as cartilage/adipose maturation,
female reproduction, protein degradation, and sugar/lipid
metabolism.

In AR-associated pathways, AR ligands, such as natural
and synthetic androgens/antiandrogens (bicalutamide,
dihydrotestosterone, enzalutamide, flutamide, R1881, SC97,
and SC245), induce signals after binding to the AR. Most
AR-associated pathways are involved in prostate cancer, and
they have also been implicated in other types of cancers, such
as fibrosarcoma and bladder and breast cancers, and in
physiological functions, such as cholesterol homeostasis,
cutaneous wound healing, muscle hypertrophy, and neurite
outgrowth.
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Table 2. Signaling pathways involving receptor crosstalk (a summary of recent studies).

Chemicala Pathway and Type of Function or Reference
crosstalk Crosstalkb Subject

ER-associated pathway
Bisphenol A/E2 ERα:IGF-1R/IRS-1/Akt B Ovarian cancer Kang et al. 2013
Bisphenol A/E2/IGF-1 ERα:IGF-1R/IRS-1/Akt B Ovarian cancer Hwang et al. 2013
Bisphenol A/Nonylphenol/TGF-β ERα:TGF-βR B Ovarian cancer Park and Choi 2014
o,p'-DDT MAPK/VEGFA:ER U2 Breast cancer Bratton et al. 2012
DEHP PPARα:ERα U1 Female reproduction Kawano et al. 2014
Di-n-butyl phthalate/TGF-β ER:TGF-βR B Prostate cancer Lee et al. 2014
E2 ERα:PI3K/Akt/mTOR U1 Endometrial cancer Hou et al. 2014
E2 pRb:ERα U2 Breast cancer Caligiuri et al. 2013
E2 ER:PI3K/Akt U1 Glucose uptake Garrido et al. 2013
E2 PI3K/Akt/mTOR:ER U1 Breast cancer Bostner et al. 2013
E2 ERα:AhR U1 Female reproduction Rataj et al. 2012
E2 ERβ:c-Fos/c-Jun/AP-1 U1 Breast cancer Zhao et al. 2010
E2/EGF HER2/MAPK:ERα/MMP-1 B Breast cancer Jung et al. 2010
E2/EGF/IGF ER:EGFR, IGF-1R B Breast cancer Tsonis et al. 2013
E2/EGF/Lapatinib (HER2 inhibitor) HER2:ERα/PR B Breast cancer Leary et al. 2010
E2/EGF/Rapamycin ER:HER2/PI3K/Akt/mTOR B Breast cancer Yan et al. 2014
E2/EGF/Trastuzumab ER:HER2/PI3K/Akt/mTOR B Breast cancer Takada et al. 2013
E2/EGF/Wnt ERα:EGFR/WBP2/Wnt/β-catenin B Breast cancer Lim et al. 2011
E2/Everolimus (mTOR inhibitor) ER:PI3K/mTOR U1 Breast cancer Cottu et al. 2014
E2/GDNF/Sunitinib (RET inhibitor) RET/ERK/Akt:ER B Breast cancer Spanheimer et al. 2014
E2/IGF-1 ERα:IGF-1R B Preadipose growth Dos Santos et al. 2010
E2/IL-8 GPER/Akt/NF-κB:CXCR1 U1 Breast cancer Jiang et al. 2013
E2/Osteopontin/EGF ER:Integrin/MEK/ERK/EGFR U1 Lung cancer Hsu et al. 2015
E2/TCDD AhR/AHRR/CYP1A5:ERα B Dioxin toxicity Lee et al. 2011
E2/TGF-β1 ERα/GRIP1:TGF-βR/MAPK B Cartilage metabolism Kato et al. 2010
E2/TNF-α ER:NF-κB B Breast cancer Kastrati et al. 2015
E2/Wnt3A Wnt/β-catenin:ERα, ERβ B Osteogenic differentiation Gao et al. 2013
G-1 (selective GPER ligand)/EGF GPER:EGFR/ERK/c-Fos/AP1 U1 Lipid metabolism Santolla et al. 2012
Heregulin-β1/E2 ErbB2/ERK:GPER U1 Breast cancer Ruan et al. 2012
IGF-1 IGF-1R/Akt2/FoxO3a:ERα U2 Breast cancer Morelli et al. 2010
IGF-1/E2 IGF-1R/PKCδ/ERK/AP1:GPER U1 Endometrial cancer De Marco et al. 2013
IGF-1/E2 IGF-1R/PI3K/Akt:ER U1 Breast cancer Zhang et al. 2012
IGF-1/E2 IGF-1R/IRS/mTOR/S6K1:ERα U1 Breast cancer Becker et al. 2011
IL-6/TAM IL-6R:ERα/PI3K/Akt, ERK U1 Ovarian cancer Wang et al. 2015
Leptin ObR/ERK:ER U2 Bone formation Wang et al. 2012a
Leptin/E2 ObR/JAK2/STAT3:ER U1 Breast cancer/Obesity Valle et al. 2011
MCP-1 CCRs/PI3K/Akt/mTOR:ER U2 Breast cancer Riverso et al. 2014
Methyl amoorain/Wnt ER/Wnt/β-catenin B Mammary tumor Mandal et al. 2013
MG132/Lactacystin/E2 JAK2/Ubiquitin-proteasome:ERα U1 Breast cancer Gupta et al. 2012
Mitogen/E2 PI3K/mTOR/HDAC1:ERα U1 Breast cancer Citro et al. 2015
Nimotuzumab/E2 EGFR/COX-2:ER U1 Breast cancer Wang et al. 2012b
TAM/EGF ERα/HOXB7:EGFR B Breast cancer Jin et al. 2012
TAM/EGF ERα:HER2 B Breast cancer Giordano et al. 2010
TAM/Fulvestrant/EGF ERα:HER2 B Breast cancer Ito et al. 2012
TAM/Gefitinib (EGFR inhibitor) ER:EGFR B Lung cancer Shen et al. 2010
TAM/Rescovitine/EGF ERα:HER2/CDK2 B Breast cancer Nair et al. 2011
TGF-β ERα:TGF-βR/PAI-1 U2 Breast cancer Stope et al. 2010
TNF-α/E2 TNF-αR/ERK:ERα U1 Gynecological disease Gori et al. 2011
TNF-α/E2 PI3K/Akt:ERα/Bcl-2 U1 Breast cancer Bratton et al. 2010
Zearalenone/hCG ERα:Nur77 U1 Testosterone biosynthesis Liu et al. 2014a

AR-associated pathway
Androgen AR/U19/EAF2:Ras/Raf/ERK U1 Prostate cancer Su et al. 2013
Androgen PTEN/PI3K:AR/FKBP5 U1 Prostate cancer Mulholland et al. 2011
Bicalutamide (AR inhibitor) AR:PI3K/Akt U1 Prostate cancer Dahlman et al. 2012
Bicalutamide/Everolimus AR:mTOR U1 Prostate cancer Schayowitz et al. 2010
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Mediators in the same signaling pathways are shown by a slash (/); and crosstalk, by a colon (:). aChemicals include ligands, modulators,
inhibitors and/or stimulators, which are sometimes inseparable from each other. bCrosstalk is classified as bidirectional (B; including three-
way crosstalk, T) or unidirectional, and the latter is further classified according to the presence of both ligands (U1) or the absence of one or
both ligands (U2). Note that crosstalk is classified as B, in which the direction is not apparent. Abbreviations; AhR: aryl hydrocarbon receptor;
AR: androgen receptor; CCR: C-C chemokine receptor; CREB: cAMP response element-binding protein; CXCR1: chemokine (C-X-C motif)
receptor 1; CREB: cyclic AMP response element-binding protein; DDE: dichlorodiphenyldichloroethylene; DDT: dichlorodiphenyltrichloro-
ethane; DEHP: di-(2-ethylhexyl)-phthalate; DMBA: 7,12-dimethylbenz[a]anthracene; E2: 17β-estradiol; EGF: epidermal growth factor;
EGFR: epidermal growth factor receptor; ER: estrogen receptor; ERK: extracellular-signal-regulated kinase; GPCR: G protein-coupled
receptor; hCG: human chorionic gonadotropin; HDAC1: histone deacetylase 1; IFN: interferon; IGF-1: insulin-like growth factor 1; IGF-1R:
insulin-like growth factor 1 receptor; IL-6R: interleukin 6 receptor; LXR: liver X receptor; MAPK: mitogen-activated protein kinase; mTOR:
mammalian target of rapamycin; ObR: leptin receptor; PI3K: phosphoinositide 3-kinase; PPARγ: peroxisome proliferator-activated
receptor γ; PR: progesterone receptor; pRb: retinoblastoma protein; p-XSC: 1,4-phenylenebis(methylene)selenocyanate; PXR: pregnane and
xenobiotic receptor; RAR: retinoic acid receptor; T3: 3,5,3'-triiodo-L-thyronine; TAM: tamoxifen; TCDD: 2,3,7,8-tetrachlorodibenzo-p-dioxin;
TGF-β: transforming growth factor β; TNF-α: tumor necrosis factor-α; TR: thyroid hormone receptor; TR4: testicular orphan receptor 4.

Bicalutamide/Rapamycin AR:mTOR U1 Prostate cancer Wu et al. 2010
Bicalutamide/Ridaforolimus AR:PI3K/Akt/mTOR U1 Prostate cancer Meulenbeld et al. 2013
Bicalutamide/Ridaforolimus AR:EGFR/Akt/mTOR U1 Prostate cancer Squillace et al. 2012
Bicalutamide/Nutlin-3 MDM2/p53:AR U1 Prostate cancer Tovar et al. 2011
Cyclopamine (Hedgehog inhibitor) AR:Hedgehog/Gli U2 Prostate cancer Chen et al. 2010
Dihydrotestosterone COUP-TF II:AR U1 Prostate cancer Song et al. 2012
Dihydrotestosterone PTEN/Akt:AR U1 Breast cancer Wang et al. 2011
Dihydrotestosterone PXR:AR U1 Prostate cancer Kumar et al. 2010
Dihydrotestosterone/Cholesterol AR:SREBP-2/LXR U1 Cholesterol homeostasis Krycer and Brown 2013
Dihydrotestosterone/Cholesterol AR:SREBP-2/LXR U1 Cholesterol homeostasis Krycer and Brown 2011
Dihydrotestosterone/E2 AR:ERα B Breast cancer Need et al. 2012
Dihydrotestosterone/EGF AR:EGFR B Bladder cancer Izumi et al. 2012
Dihydrotestosterone/EGF AR:EGFR/ErbB2 U1 Prostate cancer Zheng et al. 2011
Dihydrotestosterone/IFN AR:IFN receptor/MxA B Prostate cancer Brown et al. 2015
E2/Dihydrotestosterone ERβ:AR/PELP1 B Prostate cancer Yang et al. 2012
Enzalutamide (AR antagonist) AR:HIF-1α U1 Prostate cancer Fernandez et al. 2015
Flutamide (AR antagonist)/PM-20 AR:ERK/Cdc25A U1 Breast cancer Naderi and Liu 2010
Flutamide/TGF-β AR:TGF-βR U1 Cutaneous wound healing Toraldo et al. 2012
Heregulin (ErbB3 ligand) ErbB3/EBP-1:AR U1 Prostate cancer Zhou et al. 2010
IGF-1/R1881 (synthetic androgen) β1A integrin/IGF-1R:AR B Prostate cancer Sayeed et al. 2012
IL-6 IL-6R/pSTAT3/Fer:AR U1 Prostate cancer Rocha et al. 2013
Nodal/R1881 Cripto-1:AR U1 Prostate cancer Lawrence et al. 2011
R1881 AR:Filamin A/TrkA/PI3K/Rac B Neurite outgrowth Di Donato et al. 2015
R1881 AR:PTEN/PI3K/Akt U1 Prostate cancer Marques et al. 2015
R1881 AR:Wnt/β-catenin B Bladder cancer Li et al. 2013
R1881/E2/EGF AR:ER:EGFR T Fibrosarcoma Fiorelli et al. 2011
R1881/EGF EGFR:AR/Src B Fibrosarcoma Castoria et al. 2013
R1881/IGF-1 AR/SOCS2:IGF-1R U1 Prostate cancer Iglesias-Gato et al. 2014
R1881/IGF-1 AR:IGF-1R U1 Prostate cancer Itkonen and Mills 2013
R1881/Rapamycin PI3K/Akt/mTOR:AR U1 Prostate cancer Kaarbø et al. 2010
SC97, SC245 (antiandrogen) AR:NF-κB U1 Prostate cancer Liu et al. 2014b
Testosterone AR:GPCR/PI3K/Akt/mTOR B Muscle hypertrophy Basualto-Alarcón et al. 2013
Testosterone/Vitamin D AR:Vitamin D receptor B Prostate cancer Mordan-McCombs et al. 2010
TGF-β1 TGF-βR:ERβ:AR T Bladder cancer Xu et al. 2013
Wnt/Dihydrotestosterone Wnt/β-catenin/ICAT:AR U1 Bladder cancer Zhuo et al. 2011
p-XSC (organoselenium) PI3K/Akt:AR U1 Prostate cancer Facompre et al. 2010

TR-associated pathway
Finasteride (antiandrogen) AR:TR-β U1 Endocrine disruption Langlois et al. 2011
Propiconazole AhR:TR U1 Endocrine disruption Ghisari et al. 2015
T3 TR:CREB/L-type Ca2+ channel U1 Hyperthyroidism Chen et al. 2011
T3 TR4:TR U1 Energy homeostasis Huang et al. 2010
T3 TR:ER/AR U1 Amphibian metamorphosis Duarte-Guterman and Trudeau 2010
T3/Retinoic acid TR:RAR U1 Brain development Gil-Ibáñez et al. 2014
T3/Rosiglitazone (PPAR agonist) TR-β:PPARγ B Energy homeostasis Kouidhi et al. 2010
T3/TO901317 (LXR agonist) TR-β:LXR-α/Seladin-1 B Lipid metabolism Ishida et al. 2013
T3/TO901317 TR-β/ChREBP:LXR B Lipid metabolism Gauthier et al. 2010
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The thyroid hormone T3 is involved in TR-associated
pathways, and crosstalk has been observed between the TR
signaling pathway and those mediated by other receptors,
such as the AhR, AR, ER, LXR, PPARγ, the retinoic acid
receptor (RAR), and the testicular orphan receptor 4 (TR4).
TR-associated pathways play crucial roles in endocrine
disruption and in development/differentiation, energy
homeostasis, and lipid metabolism.

Directionality of crosstalk
Crosstalk between the ER, AR, and TR or between these and
other signaling pathways has been classified into bidirectional
(or reciprocal) or unidirectional crosstalk. Unidirectional
crosstalk has been further subdivided into two types according
to the presence or absence of both receptors (or their ligands)
(Figure 1). Bidirectional crosstalk has been observed between
the ER, AR, or TR pathways and the AhR, EGFR/HER2,
GPCR, IGF-1R, interferon receptor, LXR, TGF-βR, tumor
necrosis factor-α receptor (TNF-αR), TR4, vitamin D receptor,
or Wnt/β-catenin signaling pathways (Table 2). Other cases of
bidirectional crosstalk, such as that between the AR and ER
pathways or three-way crosstalk (among ER, AR, and TGF-βR,
or ER, AR, and IGF-1R) have also been described. Apparent
unidirectional crosstalk (type U1) has been reported in many
signaling pathways (Table 2).

Ligand-independent crosstalk (type-U2) has been identified
in cases in which the receptor has lost the ability to bind the
ligand, the receptor itself has disappeared, or it is disabled due
to mutations or other mechanisms. For example, Riverso et al.
(2014) reported that the MCP-1-stimulated promotion of 
cell division was mediated through phosphorylation of the
ER via ligand-independent crosstalk between the ER and
PI3K/Akt/mTOR pathways. o,p'-DDT is known to modulate
ERα-dependent gene expression, and Bratton et al. (2012)
found that o,p'-DDT affected the expression of the vascular
endothelial growth factor gene (VEGFA) and other genes
through ER-independent crosstalk between the MAPK
pathway and the CBP-mediated transcriptional coactivator
pathway. The responsiveness of chondrocytes to estrogen is
regulated by ligand-independent crosstalk between the
leptin-induced ERK pathway and the ER pathway during bone
formation (Wang et al. 2012a).

In breast cancer, responsiveness to estrogen is a key factor in
adopting hormonal therapy, and the loss of this responsiveness
is critical in tumor progression. Estrogen-independent tumor
growth may be promoted by various mechanisms, which are
important when selecting therapeutic strategies. For example,
crosstalk between the pRb and ER pathways regulates the
number of ERs by controlling their degradation through the
proteasome pathway, and the loss of pRb decreases estrogen
responsiveness, thereby leading to the acquisition of resistance
to hormonal therapy (Caligiuri et al. 2013). The expression and
function of ERs in breast cancer are regulated by crosstalk
between the ER pathway and the IGF-1 (Morelli et al. 2010) or
TGF-β (Stope et al. 2010) signaling pathways in a ligand-
independent manner. Ligand-independent progression of

prostate cancer has also been observed in which crosstalk
between the Hedgehog (Hh) and AR signaling pathways is a key
factor supporting the growth of androgen-deprived and
androgen-independent prostate cancer cells (Chen et al. 2010).

Endocrine-disrupting chemicals in receptor crosstalk
Endocrine-disrupting chemicals induce signals through
receptor crosstalk. For example, bisphenol A mediates signals
for the progression of ovarian cancer by binding to ERs and by
crosstalk with other signaling pathways, such as those of IGF-1
and TGF-β (Hwang et al. 2013; Kang et al. 2013; Park and Choi
2014). Other endocrine-disrupting chemicals affect
various functions (such as endocrine disruption and cancer
progression) through crosstalk between the ER, AR, TR, and
other signaling pathways (Table 2). These endocrine disruptors
include o,p'-DDT, DEHP (a plasticizer), di-n-butyl phthalate
(a plasticizer), finasteride (an antiandrogen), propiconazole
(a pesticide), p-XSC (an organoselenium), TCDD, and
zearalenone (a mycotoxin).

The AhR plays an important role in various pathways
that mediate the signals of endocrine disruptors. It is 
a ligand-activated transcription factor involved in the
regulation of biological responses to planar aromatic
hydrocarbons, such as TCDD (Denison et al. 2002).
Crosstalk involving the AhR plays important roles in the
actions of endocrine-disrupting chemicals. For example, the
inhibitory effects of the AhR against ER functions have
been attributed to crosstalk in uterine and other
reproductive organs (Safe and Wormke 2003). The
suppression of AhR signaling in response to TCDD is partly
mediated by the AhR repressor, AHRR, through the
interference of AhR-ERα crosstalk (Lee et al. 2011). Rataj
et al. (2012) recently found that, in response to E2, crosstalk
between the AhR and ER signaling pathways for the
regulation of AhR-target genes was predominantly
mediated by ERα. The triazole pesticide propiconazole
activates the AhR, but inhibits TR functions through
crosstalk (Ghisari et al. 2015). Similarly, the TR is involved
in the mechanisms underlying the actions of endocrine
disruptors. For example, the anti-androgen finasteride
affects the expression of TR-β and thyroid hormone-
responsive genes in the brains of intersex frogs (Langlois et
al. 2011).

PATHWAY-BASED RISK ASSESSMENT

A variety of assays have been developed to replace or
reduce animal tests. A key issue is how to refine these
assays by improving their accuracy, sensitivity, reliability,
and applicability (speed and cost) (see Kiyama et al. 2014;
Kiyama and Wada-Kiyama 2015). To achieve this goal,
toxicity testing based on toxicity pathways and targeted
testing was recommended as a model for future toxicity
testing by the National Research Council (2007) of the USA.
Adverse Outcome Pathways (AOPs) provide a conceptual
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framework for this task, by connecting molecular
initiating events, via toxicity pathways, to outcomes that
are relevant to risk assessment (Ankley et al. 2010;
Knapen et al. 2015). This conceptual framework has been
applied to chemicals that have estrogenic activity or that
are related to the metabolism of estrogen (such as
bisphenol A; FitzGerald and Wilks 2014), the metabolism
of androgens (such as fadrozole; Muth-Köhne et al.
2016), and that of thyroid hormone (such as triclosan;
Paul et al. 2013). AOPs that share common elements can
be combined into AOP networks (Knapen et al. 2015).
The complexity and number of these AOP networks
continues to increase. For example, Ankley et al. (2010)
proposed an AOP including ER activation in hepatocytes
by ER agonists. To this AOP, the responses of granulosa
cells and oocytes have been added (Edwards et al. 2016).
Knapen et al. (2015) listed multiple AOPs that share
molecular initiating events like AhR activation, PPARα/γ
activation and cyclooxygenase inhibition.

Much work remains to be done to develop model cases,
and more data is needed about pathways, outcomes and
effects for each chemical. New technologies, such as next-
generation-sequencing based genome-wide association
studies (Manolio 2010) and genome editing techniques
(Tan et al. 2012), hold promise for assisting with these
tasks.

CONCLUSIONS

While the actions of endocrine disruptors may be induced
by directly stimulating/modulating the endocrine system,
they may also be mediated by signaling through non-
endocrine receptors; however, this signaling requires
crosstalk with pathways involving endocrine receptors, such
as the ER, AR, and TR. We herein summarized crosstalk
between these receptors or between them and non-
endocrine receptors in order to elucidate the mechanisms
underlying the actions of endocrine disruptors. Various
signaling pathways are involved in this crosstalk, and are
characterized by their types of signaling pathways,
tissue/cell types, ligands/modulators/inhibitors/stimulators,
and the directionality of their signaling. However, it is still
difficult to assess chemicals by using only in vitro or in silico
assays without animal tests; therefore, further characterization
of signaling pathways involving crosstalk is warranted. 
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