PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New approach to hydrogeological modelling and source data collecting in a small mountainous hard rock basin - experiences from the Sudety Mts. (SW Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We demonstrate a new research methodology into flow paths and groundwater resources with in small hard rock basins, where little hydrogeological data is available, a picture may be obtained by modeling. Data has been collected in the Złoty Potok river catchment (area 4.4 sq km), located in the eastern Sudety Mts. (SW Poland). The study area, as for most small hard rock basins in the Sudety Mts. is characterized by: i) steeply sloping terrain, ii) a complex flow system connected to several media, ii) poorly constrained hydrogeological parameters. In such conditions, groundwater models are difficult to implement. To overcome these difficulties, we applied a concept of mixed flow ruled by laws of Darcy (porous media) and Hagen-Poiseuille (fractured media), and the concept of three water-bearing zones, a classic solution for scales of above several sq km, combined with a discrete fracture model. Field data applied for modeling were collected over one year, measuring all manifestations of groundwater occurrence: i) effective infiltration (lysimeter), ii) fracture mapping, iii) stream flow and flow disappearance. As a result of modelling, specific flow domains were identified; which form a system of zones, characterized by different geometries and flow velocities. A new, previously unrecognized zone of considerable importance for water extraction, i.e. fractures in the river valley axis, reaching a deep part of the orogen (up to 300 m b.g.l.) was defined. The relationships investigated allowed prepation of a prognosis for deep groundwater intake locations in poorly described mountainous areas. The success of the solutions obtained in this typical mountainous river basin suggests that this method may be come efficiently and widely used in other hard rock areas. The research undertaken offers an innovative, efficient approach to groundwater resource assessment in hard rock.
Rocznik
Strony
205–--218
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr.
Twórcy
autor
  • Department of General Hydrogeology, Institute of Geological Sciences, University of Wrocław, Cybulskiego 32, 50-205 Wrocław, Poland
autor
  • Department of General Hydrogeology, Institute of Geological Sciences, University of Wrocław, Cybulskiego 32, 50-205 Wrocław, Poland
Bibliografia
  • 1. Ayraud V., Aquilina L., Labasque T., Pauwels H., Molenat J., Pierson-Wickmann A.-C., Durand V., Bour O., Tarits C., le Corre P., Fourre E., Merot P., Davy P. (2008) Compartmentalization of physical and chemical properties in hard-rock aquifers deduced from chemical and groundwater age analyses. Applied Geochemistry, 23: 2686-2707.
  • 2. Balamurugan G., Rajendran D.S., Tirukumaran V. (2010) Impacts of climate, topography and weathering profile on hydrogeology and water resources assessment in semiarid tertain. Using Earth Observation - 1ALI, ASTERDEM and GIS techniques. International Journal of Geomatics and Geosciences, 1 (2): 119-130.
  • 3. Banks D., Rohr-Torp E., Skarpgagen H. (1994) Groundwater resource in hard rock: experiences from the Hvaler study, southeastern Norway. Applied Hydrogeology, 2: 33-42.
  • 4. Berkowitz B. (2002) Characterizing flow and transport in fractured geological media: a review. Advances in Water Resources, 25 (8-12): 861-884.
  • 5. Bocanerga E., Cardoso G. (2003) Ground water explotation in fractured rocks in South Africa. In: Proceedings of the IAH International Conference on Groundwater in Fractured Rock, 15-19 September 2003, Prague, Czech Republic: 3-4.
  • 6. Cacas M.C., Ledoux E., de Marsily G., Tillie B., Barbreau B., Durand A., Feuga B., Peaudecerf P. (1990) Modelling fracture flow with a stochastic discrete fracture network: calibration and validation - the flow model. Water Resources Research, 26 (3): 479-489.
  • 7. Chambel A. (2012) Groundwater prospecting, drilling and well construction in hard rocks in semi-arid regions: an overview. In: Proceedings of the IAH International Conference on Groundwater in Fractured Rock, 21-24 May 2012, Prague, Czech Repubi ic: 16-17.
  • 8. Ciężkowski W., Błażej R. (1995) Remarks on water balance of Złoty Jar in Złoty Stok (in Polish with English summary). In: Góry Złote - Geologia, Okruszcowanie, Ekologia: 86-88. Materiały Konferencji, Wrocław-Złoty Stok, Po land, 09-10 czerwiec 1995.
  • 9. Davis S.N., Turk I.J. (1964) Optimum depth of wells in crystal! ine rocks. Ground Water, 2: 6-11.
  • 10. Detay M., Poyet P., Emsellem Y., Bernardi A., Aubrac G. (1989) Influence du développement du reservoir capacitif ďaltérites et de son état de saturation sur les caractéristiques hydrodynamiques des forages en zone de socle cristallin. Comptes Rendus de TAcadémie des Sciences, Paris, 309 (2): 429-436.
  • 11. Dewandel B., Lachassagne P., Wyns R., Maréchal J.C., Krishnamurthy N.S. (2006) A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. Journal of Hydrology, 330 (1-2): 260-284.
  • 12. Diersch H.J. (2005) Finite Element Subsurface Flow and Transport Simulation System. User's Manual, FEFLOW Version 5.2. WASY GmbH, Berlin.
  • 13. Faillace C. (2003) Hydrogeology of hard rocks in some eastern and western African countries. In: Proceedings of the IAH International Conference on Groundwater in Fractured Rock, 15-19 September 2003, Prague, Czech Republiic: 19-25.
  • 14. Gentry W.M., Burbey T.J. (2007) Characterization of ground water flow from spring discharge in a crystaline rock environment Journal of the American Water Resources Association, 40 (5): 1205-1217.
  • 15. Houston J.F.T., Lewis R.T. (1988) The Victoria Province drought relief project, II. Boreholeyield relationships. Ground Water, 26 (4): 418-426.
  • 16. Howard K.W.F., Hughes M., Charlesworth D.L., Ngobi G. (1992) Hydrogeologic evaluation of fracture permeability in crystalline basement aquifers of Uganda. Applied Hydrogeology, 1: 55-65.
  • 17. Hrachowitz M., Soulsby C., Tetzlaff D., Dawson J.J.C., Dunn S.M., Malcolm I.A. (2009) Using longterm data sets to understand transit times in contrasting headwater catchments. Journal of Hydrology, 367: 237-248.
  • 18. Kleczkowski A.S. (1979) Hydrogeologia ziem wokół Polski. Wydawnictwa Geologiczne, Warszawa.
  • 19. Kowalski S. (1992) The natural factors conditioning occurrence of groundwaters in the Sudety Mts (in Polish with English summary). Acta Universitatis Wratislaviensis, 1324. Prace Geologiczno-Mineralogiczne, 25: 73.
  • 20. Kryza H., Kryza J. (1986) Odpływ podziemny i zasoby odnawialne Sudetów i ich przedpola jako kryterium regionalizacji hydrogeologicznej. Prace Naukowe Instytutu Geotechniki Politechniki Wrocławskiej, 49, Seria Konferencje, 21: 109-119.
  • 21. Kryza H., Kryza J. (1988) Hydrogeological conditions of occurrence of natural groundwater outflows in the granite massif of Jakuszyce region on the example of Kamienna river catchment (in Polish with English summary). Acta Universitatis Wratislaviensis, 964. Prace Geologiczno-Mineralogiczne, 11: 99-125.
  • 22. Kuusela-Lahtinen A., Niemi A., Luukkonen A. (2003) Flow dimension as an indicator of hydraulic behaviour in site characterization of fractured rock. Ground Water, 41 (3): 33-341.
  • 23. Lachassagne P., Wyns R., Bruel T., Chery L., Coutand T., Desprats J., Strat P. (2001) Exploitation of high-yields in hard-rock aquifers: downscaling methodology combining GIS and multicriteria analysis to delineate field prospecting zones. Ground Water, 39 (4): 568-581.
  • 24. Lenck P.P. (1977) Données nouvelles sur l'hydrogeology des regions à substratum métamorphique ou éruptif. Enseignements tires de la realisation de 900 forages en Cote d'Ivore. Comptes Rendus de TAcadémie des Sciences, Paris, 285: 497-500.
  • 25. Long J.C.S., Gilmur P., Witherspoon P.A. (1985) A model for steady fluid flow in random three-dimensional networks of disc-shaped fractures. Water Resources Research, 21 (8): 1105-1115.
  • 26. Manga M. (1999) On the timescales characterizing groundwater discharge at springs. Journal of Hydrology, 219: 56-69.
  • 27. Maréchal J.C., Dewandel B., Subrahmanyam K. (2004) Contribution of hydraulic tests at different scales to characterize fracture network properties in the weathered-fissured layer of a hard rock aquifers. Water Resources Research, 40: 1-17.
  • 28. McDonald M.G., Harbaugh A.W. (1988) A modular three dimensional finite-difference ground-water flow model. In: Technical of Water Resources Investigations Book, 6, Chap A1. US Geological Survey, Washington, DC.
  • 29. Neilson-Welch L.A., Allen D.M. (2012) Modelling groundwater capture zones for mountain headwater streams in fractured rock. In: Proceedings of the IAH International Conference on Groundwater in Fractured Rock, 21-24 May 2012, Prague, Czech Republic: 11.
  • 30. Olichwer T. (2003) Groundwater resources in mountainous areas on the examples of the Śnieżnik Massif and Bystrzyckie Mts (in Polish with English summary). Współczesne Problemy Hydrogeologii, XI, tom 2: 39-42. Wydawnictwo Politechnika Gdańska, Gdańsk.
  • 31. Olichwer T. (2007a) Groundwater resources of Kłodzko region (in Polish with English summary). Acta Universitatis Wratislaviensis, 3022, Seria Hydrogeologia.
  • 32. Olichwer T. (2007b) Groundwater renewable resources of Kłodzko region - selected hydrogeologic problems of the Bohemian Massif and of other hard rock terrains in Europe. Acta Universitatis Wratislaviensis, 3041, Seria Hydrogeologia: 247-258.
  • 33. Olofsson B. (1994) Flow of groundwater from soil to crystalline rock. Applied Hydrogeology, 2 (3): 71-83.
  • 34. Paczyński B. (1995) Zasoby, jakość i ochrona zwykłych wód podziemnych. In: Ati as hydrogeologiczny Polski 1:500 000, cz. II. Państwowy Instytut Geologiczny, Warszawa.
  • 35. Pickens J.F., Grisak G.E., Avis J.D., Belanger D.W., Thury M. (1987) Analysis and interpretation of borehole hydraulic tests in deep boreholes: principles, model development, and applications. Water Resources Research, 23 (7): 1341-1375.
  • 36. Probst M. (2003) New approaches towards an integrated model-based understanding of groundwater flow in fractured-aquifer catchments and implication for practical problems. In: Proceedings of the IAH International Conference on Groundwater in Fractured Rock, 15-19 September 2003, Prague, Czech Republic: 279-280.
  • 37. Ruch C., Kupfersberger H. (2003) Modeling the groundwaterflow over four years in a small alpine crystalline headwater catchment. In: Proceedi ngs of the IAH International Conference on Groundwater in Fractured Rock, 15-19 September 2003, Prague, Czech Republic: 173-174.
  • 38. Sawicki L. (1967) Mapa geologiczna Sudetów i bloku przedsudeckiego w skali 1:200 000. Wydawnictwa Geologiczne, Warszawa.
  • 39. Snow D.T. (1969) Anisotropic permeability of fractured media. Water Resources Research, 5 (6): 173-1289.
  • 40. Stasko S. (1996) Groundwaters in crystaline rocks in selcted areas of Polish part of Sudety Mts (in Polish with English summary). Acta Universitatis Wratislaviensis, 1870. Prace Geologiczno-Mineralogiczne, 53: 1-86.
  • 41. Stasko S. (2010) On groundwater in crystalline rocks of the Sudetes and their foreland (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 440: 135-144.
  • 42. Stasko S., Tarka R. (2002) Recharge and drainage of groundwaters in mountainous areas on the example of Śnieżnik Massif (in Polish with English summary). Acta Universitatis Wratislaviensis, 2528, Seria Hydrogeologia: 1-64.
  • 43. Svensson U. (2001) A continuum representation of fracture networks, Part II: application to the Aspo Hard Rock Laboratory. Journal of Hydrology, 250: 187-205.
  • 44. Tarka R. (1997) Groundwaters recharge in mountainous crystalline massifs on the example of Śnieżnik Masyw in the Sudety Mts. (in Polish with English summary). Acta Universitatis Wratislaviensis, Prace Geologiczno-Mineralogiczne, 56, 1-66.
  • 45. Tayl or R., Howard K. (2000) A tectono-geomorphic model of the hydrogeology of deeply weathered crystalline rock: evidence from Uganda. Hydrogeology Journal, 8 (3): 279-294.
  • 46. Walker D.D., Gylling B., Strom A., Selroos J.O. (2001) Hydrogeological studies for nuclear-waste disposal in Sweden. Hydrogeology Journal, 9 (5): 419-431.
  • 47. Wojciechowska I. (1995) Budowa geologiczna NE części Ziemi Kłodzkiej jako tło mineralizacji rudnej. In: Góry Złote - Geologia, Okruszcowanie, Ekologia: 7-9. Materiały Konferencji Naukowej Wrocław-Złoty Stok, Poland, 09-10 czerwca 1995.
  • 48. Wright C.E. (1980) Surface water and groundwater interaction: UNESCO, Studies and Reports in Hydrology, 29: 1-123.
  • 49. Wright E.P. (1992) The hydrogeology of crystalline basement aquifers in Africa. Geological Society Special Publications, 66:1-27.
  • 50. Wyns R., Baltassat J.M., Lachassagne P., Legchenko A., Vairon J., Mathieu F. (2004) Application of SNMR soundings for groundwater reserves mapping in weathered basement rocks (Brittany, France). Bulletin de la Société géologique de France, 175 (1): 21-34.
  • 51. Wu Y., Liu H., Bodvarsson G. (2004) A triple-continuum approach for modeling flow and transport in fractured rock. Journal of Contaminant Hydrology, 73: 145-179.
  • 52. Zuber A., Weisse S.M., Osenbruck K., Grabczak J., Ciężkowski W. (1995) Age and recharge area of thermal waters in Ladek Spa (Sudeten, Poland) deduced from environmental isotopes and noble gas data. Journal of Hydrology, 167: 327-349.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5cd0122-a749-42a6-9e9c-b7af97eff546
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.