PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pyrolysis-derived waste polypropylene oils in gas turbine engines: a comprehensive performance and emission study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Addressing the burgeoning issue of polymer waste management and disposal, chemical recycling, specifically the production of highquality oil, presents an enticing solution. This research paper delves into the process of plastic waste pyrolysis, focusing on polypropylene, and thoroughly examines the physico-chemical properties of the resulting pyrolytic oil. The oils, obtained from waste plastic pyrolysis (referred to as WPPO), are then blended with kerosene and utilized as fuel for a gas turbine engine. The primary objective of this investigation is to ascertain how the blend composition influences the performance and emission parameters of the micro gas turbine. In our findings, it was observed that all tested waste plastic pyrolysis blends displayed a trend towards escalating regulated emissions such as nitrogen oxides (NOx) with an average increase of 26% for polypropylene pyrolysis oil (PPO). The emission index (EI) for carbon monoxide (CO) was found to be relatively consistent across all fuel blends tested in this study. Interestingly, when considering the thrust specific fuel consumption (TSFC) within the EI calculation, blends of aviation kerosene and plastic oil showed lower values in comparison to the pure Jet A-1 fuel. Furthermore, an augmentation in the proportion of WPPO in the blends consequently led to an elevation in the exhaust gas temperature (an average increase of 8.7% for PPO). Interestingly, the fuel efficiency of the Jet engine, expressed as TSFC, demonstrated a decrease, with an average reduction of 13.8% observed for PPO.
Rocznik
Strony
157--183
Opis fizyczny
Bibliogr. 46 poz., rys.
Twórcy
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • [1] Barsali S., De Marco A., Giglioli R., Ludovici G., Possenti A.: Dynamic modelling of biomass power plant using micro gas turbine. Renew. Energy 80(2015), 806–18.doi: 10.1016/J.RENENE.2015.02.064
  • [2] Chiaramonti D., Goumas T.: Impacts on industrial-scale market deployment of advanced biofuels and recycled carbon fuels from the EU Renewable Energy Directive II. Appl. Energy 251(2019), 113351. doi: 10.1016/J.APENERGY.2019.113351
  • [3] Daraei M., Avelin A., Dotzauer E., Thorin E.: Evaluation of biofuel production integrated with existing CHP plants and the impacts on production planning of the system – A case study. Appl. Energy 252(2019), doi: 10.1016/J.APENERGY.2019.113461
  • [4] Gonzalez-Salazar M.A., Venturini M., Poganietz W.R., Finkenrath M., Kirsten T., Acevedo H., et al.: Development of a technology roadmap for bioenergy exploitation including biofuels, waste-to-energy and power generation & CHP. Appl. Energy180(2016), 338–352. doi: 10.1016/J.APENERGY.2016.07.120
  • [5] Januszewicz K., Kazimierski P., Suchocki T., Kardaś D., Lewandowski W., Klugmann-Radziemska E., et al.: Waste rubber pyrolysis: Product yields and limonene concentration. Materials (Basel) 13(2020). doi: 10.3390/ma13194435
  • [6] Kazimierski P., Januszewicz K., Godlewski W., Fijuk A., Suchocki T., Chaja P., et al.: The course and the effects of agricultural biomass pyrolysis in the production of high-calorific biochar. Materials (Basel) 15(2022), 3, 1038. doi: 10.3390/ma15031038
  • [7] GmbH PMRG (PEMRG) and CM&S.: Final Report, 2019.
  • [8] European Association of Plastics Recycling and Recovery Organisations.: An analysis of European plastics production, demand and waste data. Belgium, 2015.
  • [9] Anuar Sharuddin S.D., Abnisa F., Van Daud W.M.A., Aroua M.K.: A review on pyrolysis of plastic wastes. Energy Convers. Manag. 115(2016), 308–326. doi: 10.1016/j.enconman.2016.02.037
  • [10] Ziółkowski P., Stasiak K., Amiri M., Mikielewicz D.: Negative carbon dioxide gas power plant integrated with gasification of sewage sludge. Energy 262(2023), 125496. doi: 10.1016/j.energy.2022.125496
  • [11] Kaszuba M., Ziółkowski P., Mikielewicz D.: Performance of cryogenic oxygen production unit with exhaust gas bleed for sewage sludge gasification and different oxygen purities. Arch. Thermodyn. 44(2023), 3, 63–81. doi: 10.24425/ather.2023.147537
  • [12] Kumar S., Prakash R., Murugan S., Singh R.K.: Performance and emission analysis of blends of waste plastic oil obtained by catalytic pyrolysis of waste HDPE with diesel in a CI engine. Energy Convers. Manag. 74(2013), 323–331. doi: 10.1016/J.ENCONMAN.2013.05.028
  • [13] Kazimierski P., Hercel P., Suchocki T., Smoliński J., Pladzyk A., Kardaś D., et al.: Pyrolysis of pruning residues from various types of orchards and pretreatment for energetic use of biochar. Materials (Basel) 14(2021), 11, 2969. doi:10.3390/ma14112969
  • [14] Kantorek M., Jesionek K., Polesek-Karczewska S., Ziółkowski P., Stajnke M., Badur J.: Thermal utilization of meat-and-bone meal using the rotary kiln pyrolyzer and the fluidized bed boiler – The performance of pilot-scale installation. Renew. Energy 146(2021), 1447–1456. doi: 10.1016/j.renene.2020.10.124
  • [15] Cai N., Xia S., Xiao H., Chen Y., Chen W., Yang H., et al.: Distinguishing the impact of temperature on iron catalyst during the catalytic-pyrolysis of waste polypropylene. Proc. Combust. Inst. 39(2023), 1, 835-845. doi: 10.1016/j.proci.2022.06.008
  • [16] Aisien E.T., Otuya I.C., Aisien F.A.: Thermal and catalytic pyrolysis of waste polypropylene plastic using spent FCC catalyst. Environ. Technol. Innov. 22(2021),101455. doi: 10.1016/j.eti.2021.101455
  • [17] Kalargaris I., Tian G., Gu S.: Combustion, performance and emission analysis of a DI diesel engine using plastic pyrolysis oil. Fuel Process. Technol. 157(2017),108–115. doi: 10.1016/J.FUPROC.2016.11.016
  • [18] Mani M., Nagarajan G., Sampath S:. Characterisation and effect of using waste plastic oil and diesel fuel blends in compression ignition engine. Energy 36(2011), 212–219. doi: 10.1016/j.energy.2010.10.049
  • [19] Singh R.K., Ruj B., Sadhukhan A.K., Gupta P., Tigga V.P.: Waste plastic to pyrolytic oil and its utilization in CI engine: Performance analysis and combustion characteristics. Fuel 262(2020), 116539. doi: 10.1016/J.FUEL.2019.116539
  • [20] Das A.K., Hansdah D., Mohapatra A.K., Panda A.K.: Energy, exergy and emission analysis on a DI single cylinder diesel engine using pyrolytic waste plastic oil diesel blend. J. Energy Inst. 93(2020), 1624–1633. doi: 10.1016/j.joei.2020.01.024
  • [21] Singh T.S., Rajak U., Dasore A., Muthukumar M., Verma T.N.: Performance and ecological parameters of a diesel engine fueled with diesel and plastic pyrolyzed oil (PPO) at variable working parameters. Environ. Technol. Innov. 22(2021). doi:10.1016/j.eti.2021.101491
  • [22] Januszewicz K., Hunicz J., Rybak A.: An experimental assessment on a diesel engine powered by blends of waste-plastic-derived pyrolysis oil with diesel. Energy 281(2023). doi: 10.1016/j.energy.2023.128330
  • [23] Devaraj J., Robinson Y., Ganapathi P.: Experimental investigation of performance, emission and combustion characteristics of waste plastic pyrolysis oil blended with diethyl ether used as fuel for diesel engine. Energy 85(2015), 304–309. doi:10.1016/j.energy.2015.03.075
  • [24] Chiaramonti D., Oasmaa A., Solantausta Y.: Power generation using fast pyrolysis liquids from biomass. Renew. Sustain. Energy Rev. 11(2007), 1056–1086. doi:10.1016/J.RSER.2005.07.008
  • [25] Pilavachi P.A.: Mini- and micro-gas turbines for combined heat and power. Appl. Therm. Eng. 22(2002), 2003–2014. doi: 10.1016/S1359-4311(02)00132-1
  • [26] Suchocki T., Witanowski Ł., Lampart P., Kazimierski P., Januszewicz K., Gawron B.: Experimental investigation of performance and emission characteristics of a miniature gas turbine supplied by blends of kerosene and waste tyre pyrolysis oil. Energy 215(2021), 119125. doi: 10.1016/j.energy.2020.119125
  • [27] Buffi M., Cappelletti A., Rizzo A.M., Martelli F., Chiaramonti D.: Combustion of fast pyrolysis bio-oil and blends in a micro gas turbine. Biomass Bioenerg.115(2018), 74–85. doi: 10.1016/J.BIOMBIOE.2018.04.020
  • [28] Gawron B., Białecki T.: Impact of a Jet A-1/HEFA blend on the performance and emission characteristics of a miniature turboJet engine. Int. J. Environ. Sci. Technol. 15(2018), 1501–1508. doi: 10.1007/s13762-017-1528-3
  • [29] Gawron B., Białecki T., Janicka A., Suchocki T.: Combustion and emissions characteristics of the turbine engine fueled with HeFA blends from different feedstocks. Energies 13(2020), 1–12. doi: 10.3390/en13051277
  • [30] Chmielewski M, Niszczota P, Gieras M. Combustion efficiency of fuel-water emulsion in a small gas turbine. Energy 211(2020), 118961. doi: 10.1016/j.energy.2020.118961
  • [31] Manigandan S., Atabani A.E., Ponnusamy V.K., Gunasekar P.: Impact of additives in Jet-A fuel blends on combustion, emission and exergetic analysis using a microgas turbine engine. Fuel 276(2020), 118104. doi: 10.1016/j.fuel.2020.118104
  • [32] Badami M., Nuccio P., Pastrone D., Signoretto A.: Performance of a small-scale turboJet engine fed with traditional and alternative fuels. Energy Convers. Manag. 82(2014), 19–28. doi: 10.1016/j.enconman.2014.03.026
  • [33] Bhele S.K., Deshpande N.V., Thombre S.B.: Experimental investigation of combustion characteristics of Jatropha biodiesel (JME) and its diesel blends for gas turbine combustor. Mater. Today Proc. 5(2018), 11, 23404-23412. doi: 10.1016/J.MATPR.2018.11.080
  • [34] Gürbüz H., Akçay H., Aldemir M., Akçay İ.H., Topalcı Ü.: The effect of eurodiesel-hydrogen dual fuel combustion on performance and environmental-economic indicators in a small UAV turbojet engine. Fuel 306(2021), 121735. doi: 10.1016/J.FUEL.2021.121735
  • [35] Habib Z., Parthasarathy R., Gollahalli S.: Performance and emission characteristics of biofuel in a small-scale gas turbine engine. Appl. Energy 87(2010), 1701–1709. doi: 10.1016/j.apenergy.2009.10.024
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5cb1c06-d1ae-4f42-8687-9f2b0d64784b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.