PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermochromic materials in the paints and varnishes sector. Part I: perception and measurement of color

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Materiały termochromowe w sektorze farb i lakierów. Część I: postrzeganie i pomiar barwy
Języki publikacji
EN
Abstrakty
EN
Considerations about thermochromism should begin with exploring the issue of color. Only the assimilation of the basic laws and phenomena that rule the world of colors, and the resulting classification systems, will allow for a proper understanding of this matter. This article presents the most important information regarding color perception, especially from a mathematical perspective, in a concise and accessible way. Color spaces known and used in the paint and varnish sector are described, including: CIELab, and commercially important color classification systems, such as RAL or Natural Color System. The methods of color measurement along with dedicated equipment and standards that are used in the everyday work of a coatings technology specialist are presented. A brief review of the state of knowledge in the field of chromism and its various types was made.
PL
Rozważania o termochromizmie należy rozpocząć od zgłębienia zagadnienia barwy. Dopiero poznanie podstawowych praw i zjawisk rządzących światem kolorów, a także wynikających z nich systemów klasyfikacji, pozwala na zrozumienie tej materii. W artykule w zwięzły i przystępny sposób przedstawiono najważniejsze informacje dotyczące postrzegania barw, zwłaszcza w ujęciu matematycznym. Opisano znane i stosowane w sektorze farb i lakierów przestrzenie barw, m.in. CIELab, oraz systemy klasyfikacji kolorów o znaczeniu komercyjnym, takie jak RAL czy Natural Colour System. Opisano metody pomiaru barw oraz przeznaczony do tego sprzęt i odpowiednie normy, których używa się w codziennej pracy technologa wyrobów lakierowych. Dokonano przeglądu stanu wiedzy w zakresie chromizmu oraz różnych jego odmian.
Rocznik
Tom
Strony
152--164
Opis fizyczny
Bibliogr. 60 poz., rys., wykr.
Twórcy
  • Łukasiewicz Research Network – Institute for Engineering of Polymer Materials and Dyes, Toruń, Poland
  • Doctoral School, Silesian University of Technology, Gliwice, Poland
autor
  • Łukasiewicz Research Network – Institute of Non-Ferrous Metals, Gliwice, Poland
  • Doctoral School, Silesian University of Technology, Gliwice, Poland
  • Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland
  • Łukasiewicz Research Network – Institute for Engineering of Polymer Materials and Dyes, Toruń, Poland
Bibliografia
  • [1] J. Laws, R. Parachuru. 2021. “New and Emerging Smart Materials and Their Applications: A Review.” Journal of Material Sciences and Engineering 10(9): 1–6.
  • [2] A. Hakami, S. S. Srinivasan, P. K. Biswas, A. Krishnegowda, S. L. Wallen, E. K. Stefanakos. 2022. “Review on Thermochromic Materials: Development, Characterization, and Applications.” Journal of Coatings Technology and Research 19: 377–402. DOI: 10.1007/s11998-021-00558-x.
  • [3] P. H. N. Crosby, A. N. Netravali. 2022. “Green Thermochromic Materials: A Brief Review.” Advanced Sustainable Systems 6(9): 2200208. DOI: 10.1002/adsu.202200208.
  • [4] M. Štaffová, F. Kučera, J. Tocháček, P. Dzik, F. Ondreáš, J. Jančář. 2021. “Insight into Color Change of Reversible Thermochromic Systems and Their Incorporation into Textile Coating.” Journal of Applied Polymer Science 138(4): 49724. DOI: 10.1002/app.49724.
  • [5] A. A. Butt, S. B. de Vries, R. C. G. M. Loonen, J. L. M. Hensen, A. Stuiver, J. E. J. van den Ham, B. S. J. F. Erich. 2021. “Investigating the Energy Saving Potential of Thermochromic Coatings on Building Envelopes.” Applied Energy 291: 116788. DOI: 10.1016/j.apenergy.2021.116788.
  • [6] https://www.gminsights.com/industry-analysis/thermochromicpigments-market (access 30.04.2024).
  • [7] R. G. Kuehni. 2012. Color: An Introduction to Practice and Principles. Hoboken, New Jersey: John Wiley and Sons.
  • [8] P. Artal. 2015. “Image Formation in the Living Human Eye.” Annual Review of Vision Science 1: 1–17. DOI: 10.1146/annurev-vision-082114-035905.
  • [9] F. Paulsen, J. Waschke (eds.). 2018. Sobotta Atlas of Anatomy: Head, Neck and Neuroanatomy. Munich: Urban and Fischer.
  • [10] E. S. Perkins, H. Davson. 2024. Encyclopedia Britannica: Human eye: Definition, Anatomy, Diagram, Function, and Facts. https://www.britannica.com/science/human-eye (access: 18.05.2024).
  • [11] H. Tsukamoto, A. Terakita. 2010. “Diversity and Functional Properties of Bistable Photopigments.” Photochemical and Photobiological Sciences 9(11): 1435–1443. DOI: 10.1039/c0pp00168f.
  • [12] A. Zausznica. 1959. Nauka o barwie. Warszawa: Wydawnictwo Naukowe PWN.
  • [13] H. Kragh. 2002. Quantum Generations: A History of Physics in the Twentieth Century. Princeton, New Jersey: Princeton University Press.
  • [14] G. Waldman. 2002. Introduction to Light: The Physics of Light, Vision, and Color. Mineola, New York: Dover Publications.
  • [15] B. Wardle. 2009. Principles and Applications of Photochemistry. Chichester: John Wiley and Sons.
  • [16] C. W. Reed, F. R. Lipsett. 1963. “Energy Transfer in Naphthalene-Tetracene Solid Solutions.” Journal of Molecular Spectroscopy 11(1–6): 139–161. DOI: 10.1016/0022-2852(63)90013-4.
  • [17] A. E. Shapiro. 1984. “Experiment and Mathematics in Newton’s Theory of Color.” Physics Today 37(9): 34–42. DOI: 10.1063/1.2916400.
  • [18] E. C. Millington. 1942. “History of the Young-Helmholtz Theory of Colour Vision.” Annals of Science 5(2): 167–176. DOI: 10.1080/00033794200201421.
  • [19] P. Mollica. 2013. Color Theory: An Essential Guide to Color – from Basic Principles to Practical Applications. Irvine, California: Walter Foster Publishing.
  • [20] J. Gravesen. 2015. “The Metric of Colour Space.” Graphical Models 82: 77– 86. DOI: 10.1016/j.gmod.2015.06.005.
  • [21] N. A. Ibraheem, M. M. Hasan, R. Z. Khan, P. K. Mishra. 2012. “Understanding Color Models: A Review.” ARPN Journal of Science and Technology 2(3): 265–275.
  • [22] F. M. Clydesdale, E. M. Ahmed. 1978. “Colorimetry – Methodology and Applications.” CRC Critical Reviews in Food Science and Nutrition 10(3): 243– 301. DOI: 10.1080/10408397809527252.
  • [23] B. Fortner, T. E. Meyer. 1997. Number by Colors: A Guide to Using Color to Understand Technical Data. New York: Springer.
  • [24] B. C. K. Ly, E. B. Dyer, J. L. Feig, A. L. Chien, S. Del Bino. 2020. “Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement.” Journal of Investigative Dermatology 140(1): 3–12.e1. DOI: 10.1016/j.jid.2019.11.003.
  • [25] G. A. Klein, 2010. Industrial Color Physics. New York: Springer.
  • [26] J. Best (ed.). 2017. Colour Design: Theories and Applications. Oxford: Woodhead Publishing.
  • [27] J. S. Lluch. 2019. Color for Architects. New York: Princeton Architectural Press.
  • [28] P. Green, L. MacDonald (eds.). 2011. Colour Engineering: Achieving Device Independent Colour. Chichester: John Wiley and Sons.
  • [29] M. G. Mellon. 1937. “The Role of Spectrophotometry in Colorimetry.” Industrial and Engineering Chemistry 9(2): 51–56. DOI: 10.1021/ac50106a001.
  • [30] M. Dadi, M. Yasir. 2022. Colorimetry – Spectroscopy and Spectrophotometry: Principles and Applications for Colorimetric and Related Other Analysis. In: A. K. Samanta (ed.). Colorimetry. London: IntechOpen. DOI: 10.5772/intechopen.101106 .
  • [31] https://www.xrite.com/page/color-spectrophotometer (access: 18.05.2024).
  • [32] Y. Xu, M. R. Luo, P.-L. Sun, C. Y. Li. 2013. “Effective Models for Correlating Spectral Reflectance between Spectrophotometers.” Coloration Technology 129(4): 312–321. DOI: 10.1111/cote.12046.
  • [33] https://www.xrite.com/-/media/xrite/files/whitepaper_pdfs/l10-001_a_guide_to_understanding_color_communication/l10-001_understanding_color_en.pdf (access: 18.05.2024).
  • [34] Y. Kun, Y. Huimin, J. Shagzhong. 2014. “A Type of Spectrophotometer with Both SCI and SCE Measurement Structures.” Optik 125(17): 4672–4677. DOI: 10.1016/j.ijleo.2014.04.089.
  • [35] E. Kirchner, W. Cramer. 2012. “Making Sense of Measurement Geometries for Multi-Angle Spectrophotometers.” Color: Research and Application 37(3): 186–198. DOI: 10.1002/col.20679.
  • [36] S. M. Goñi, V. O. Salvadori. 2017. “Color Measurement: Comparison of Colorimeter vs. Computer Vision System.” Journal of Food Measurement and Characterization 11: 538–547. DOI: 10.1007/s11694-016-9421-1.
  • [37] https://www.xrite.com/categories/densitometers (access: 18.05.2024).
  • [38] ISO/CIE 11664: Colorimetry.
  • [39] DIN 53236: Colouring Materials – Conditions of Measurement and Evaluation for the Determination of Colour Differences for Paint Coatings, Similar Coatings and Plastics.
  • [40] SAE J1545: Instrumental Color Difference Measurement for Exterior Finishes, Textiles, and Colored Trim.
  • [41] VW 50195: Colorimetric Evaluation of Exterior Automotive Paint Finishes.
  • [42] PN-ISO 7724: Paints and Varnishes – Colorimetry.
  • [43] Y. Fukuda. 2007. Inorganic Chromotropism: Basic Concepts and Applications of Colored Materials. Berlin: Springer.
  • [44] A. K. Sasmal, T. Pal. 2021. “Chromism of Chemical Compounds.” Journal of the Indian Chemical Society 98(5): 100073. DOI: 10.1016/j.jics.2021.100073.
  • [45] M. Vik, A. P. Periyasamy. 2018. Chromic Materials: Fundamentals, Measurements, and Applications. New York: Apple Academic Press.
  • [46] H. Ramlow, K. L. Andrade, A. P. Serafini Immich. 2020. “Smart Textiles: An Overview of Recent Progress on Chromic Textiles.” The Journal of The Textile Institute 112(1): 152–171. DOI: 10.1080/00405000.2020.1785071.
  • [47] B. Kopyciński, A. Duda, E. Langer, G. Kamińska-Bach. 2024. “Color Photostability Assessment of Ultrasound-Assisted Extracts From European Blueberry (Vaccinium myrtillus L.) Obtained with the Use of Non-Toxic Solvents.” Wood. Research papers. Reports. Announcements 67(213): 00019. DOI: 10.53502/wood-187625.
  • [48] S. Wang, X. Liu, M. Yang, Y. Zhang, K. Xiang, R. Tang. 2015. “Review of Time Temperature Indicators as Quality Monitors in Food Packaging.” Packaging Technology and Science 28(10): 839–867. DOI: 10.1002/pts.2148.
  • [49] B. Kopyciński, A. Duda. 2022. “Anthocyanins – Corrosion Inhibitors Straight from Nature.” Ochrona przed Korozją 65(7): 216–221. DOI: 10.15199/40.2022.7.2.
  • [50] F. Zhou, D. Liang, S. Liu, Z. Guo, M. Wang, G. Zhou. 2023. “Water-Based Additive-Free Chromic Inks for Printing of Flexible Photochromics and Electrochromics.” ACS Applied Materials and Interfaces 15(42): 49418–49426. DOI: 10.1021/acsami.3c09595.
  • [51] M. Theerasilp, D. Crespy. 2021. “Halochromic Polymer Nanosensors for Simple Visual Detection of Local pH in Coatings.” Nano Letters 21(8): 3604–3610. DOI: 10.1021/acs.nanolett.1c00620.
  • [52] J. Lee, T. Kim. 2024. “Wearable Chemical Gas Sensors with Color Changeable Functional Dyes for Detection of Organophosphorus Nerve Agents.” Cellulose 31: 3729–3746. DOI: 10.1007/s10570-024-05772-5.
  • [53] Y. Pu, J. Fang. 2022. “Preparation and Thermochromic Behavior of Low- -Temperature Thermochromic Microcapsule Temperature Indicators.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 653: 129889. DOI: 10.1016/j.colsurfa.2022.129889.
  • [54] O. Panák, M. Držková, N. Kailová, T. Syrový. 2018. “Colorimetric Analysis of Thermochromic Samples in Different Forms Employing a Digital Camera.” Measurement 127: 554–564. DOI: 10.1016/j.measurement.2018.06.025.
  • [55] R. Andretta, C. L. Luchese, I. C. Tessaro, J. C. Spada. 2019. “Development and Characterization of pH-Indicator Films Based on Cassava Starch and Blueberry Residue by Thermocompression.” Food Hydrocolloids 93: 317– 324. DOI: 10.1016/j.foodhyd.2019.02.019.
  • [56] Y. K. Park, H. J. Oh, J. H. Bae, J. Y. Lim, H. D. Lee, S. I. Hong, H. S. Son, J. H. Kim, S. J. Lim, W. Lee. 2020. “Colorimetric Textile Sensor for the Simultaneous Detection of NH3 and HCl Gases.” Polymers 12(11): 2595. DOI: 10.3390/polym12112595.
  • [57] S. Al-Qahtani, E. Aljuhani, R. Felaly, K. Alkhamis, J. Alkabli, A. Munshi, N. El-Metwaly. 2021. “Development of Photoluminescent Translucent Wood toward Photochromic Smart Window Applications.” Industrial and Engineering Chemistry Research 60(23): 8340–8350. DOI: 10.1021/acs.iecr.1c01603.
  • [58] M. Aller-Pellitero, S. Santiago-Malagón, J. Ruiz, Y. Alonso, B. Lakard, J.-Y. Hihn, G. Guirado, F. Javier del Campo. 2020. “Fully-Printed and Silicon Free Self- -Powered Electrochromic Biosensors: Towards Naked Eye Quantification.” Sensors and Actuators B: Chemical 306: 127535. DOI: 10.1016/j.snb.2019.127535.
  • [59] A. Kakoti, J. Borah, U. N. Hazarika, S. P. Bharadwaj, P. Dutta, P. Khakhlary. 2023. “Solvatochromism as a Tool to Visually Recognise Wide Range of Commonly Used Solvents and Inexpensive Dye Based Optical Sensor for H2O, D2O and H2O2.” Journal of Molecular Liquids 377: 121558. DOI: 10.1016/j.molliq.2023.121558.
  • [60] R. Atav, U. Ergünay, E. Akkuş. 2022. “Producing Garment Based Multichromic Smart Sensors through Dyeing Cotton Fabrics with Chromic Dyes.” Cellulose 29: 571–604. DOI: 10.1007/s10570-021-04292-w.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5c94d0a-7f19-49b4-92f2-a2daf9fcf6e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.