PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Results on the controllability of Caputo’s fractional descriptor systems with constant delays

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper investigates the controllability of fractional descriptor linear systems with constant delays in control. The Caputo fractional derivative is considered. Using the Drazin inverse and the Laplace transform, a formula for solving of the matrix state equation is obtained. New criteria of relative controllability for Caputo’s fractional descriptor systems are formulated and proved. Both constrained and unconstrained controls are considered. To emphasize the importance of the theoretical studies, an application to electrical circuits is presented as a practical example.
Rocznik
Strony
art. no. e146287
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
autor
  • Department of Applied Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland
Bibliografia
  • [1] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, vol. 198, Academic Press, 1999.
  • [2] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, 2006.
  • [3] J. Sabatier, O.P. Agrawal, and J.A Tenreiro Machado, Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering, Springer-Verlag, 2007.
  • [4] A. Monje, Y. Chen, B.M. Viagre, D. Xue, and V. Feliu, Fractional-order Systems and Controls. Fundamentals and Applications, Springer-Verlag, 2010.
  • [5] A. Lazopoulos, K. Karaoulanis, and D. Lazopoulos, “On Fractional Modelling of Viscoelastic Mechanical Systems,” Mech. Res. Commun., vol. 98, pp. 54–56, 2019.
  • [6] L. Chen, B. Basu, and D. McCabe, “Fractional order models for system identification of thermal dynamics of buildings,” Energy Build., vol. 133, pp. 381–388, 2016.
  • [7] A. Dzieliński, D. Sierociuk, and G. Sarwas, “Some applications of fractional order calculus,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 58, no. 4, pp. 583–592, 2010.
  • [8] A.T. Azar, A.G. Radwan, and S. Vaidyanathan, Fractional Order Systems. Optimization, Control, Circuit Realizations and Applications, Advances in Nonlinear Dynamics and Chaos, Academic Press, 2018.
  • [9] L. Dai, “Singular Control Systems,” Lectures Notes in Control and Information Sciences, Springer-Verlag, Berlin, 1989.
  • [10] M. Dodig and M. Stosic, “Singular systems state feedbacks problems,” Linear Algebra Appl., vol. 431, pp. 1267–1292, 2009.
  • [11] D. Guang-Ren, Analysis and Design of Descriptor Linear Systems, Springer, New York, 2010.
  • [12] T. Kaczorek, “Singular fractional discrete-time linear systems,” Control Cybern., vol. 40, pp. 753–761, 2011.
  • [13] A.A. Belov, O.G. Adrianova, and A.P. Kurdyukov, “Practical Application of Descriptor Systems,” In: Control of Discrete-Time Descriptor Systems. Studies in Systems, Decision and Control, vol. 157, Springer, 2018.
  • [14] T. Kaczorek, “Positive linear systems with different fractional orders,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 58, no. 3, pp. 458–453, 2010.
  • [15] T. Kaczorek, “Selected Problems of Fractional Systems Theory,” Lecture Notes in Control and Information Science, vol. 411, 2011.
  • [16] K. Balachandran and J. Kokila, “On the Controllability of Fractional Dynamical Systems,” Int. J. Appl. Math. Comput. Sci., vol. 22, no. 3, pp. 523–531, 2012.
  • [17] K. Balachandran and J. Kokila, “Controllability of fractional dynamical systems with prescribed controls,” IET Control Theory Appl., vol. 7, no. 9, pp. 1242–1248, 2013.
  • [18] Y.Q. Chen, H.S. Ahn, and D. Xue, “Robust controllability of interval fractional order linear time invariant systems,” Signal Process., vol. 86, pp. 2794–2802, 2006.
  • [19] A. Babiarz and M. Niezabitowski: “Controllability Problem of Fractional Neutral Systems: A Survey,” Math. Probl. Eng., vol. 2017, p. 4715861 (1–15), 2017.
  • [20] K. Balachandran, Y. Zhou and J. Kokila, “Relative controllability of fractional dynamical systems with delays in control,” Commun. Nonlinear. Sci. Numer. Simulat., vol. 17, pp. 3508–3520, 2012.
  • [21] K. Balachandran, J. Kokila, and J.J. Trujillo, “Relative controllability of fractional dynamical systems with multiple delays in control,” Comput. Math. Appl., vol. 64, pp. 3037–3045, 2012.
  • [22] J. Wei, “The controllability of fractional control systems with control delay,” Comput. Math. Appl., vol. 64, pp. 3153–3159, 2012.
  • [23] B. Sikora, “Controllability of time-delay fractional systems with and without constraints,” IET Control Theory Appl., vol. 10, pp. 1–8, 2016.
  • [24] B. Sikora, “Controllability criteria for time-delay fractional systems with a retarded state,” Int. J. Appl. Math. Comput. Sci., vol. 26, pp. 521–531, 2016.
  • [25] J. Klamka and B. Sikora, “New controllability Criteria for Fractional Systems with Varying Delays,” Lecture Notes in Electrical Engineering. Theory and Applications of Non-integer Order Systems, vol. 407, pp. 333–344, 2017.
  • [26] B. Sikora and J. Klamka, “Constrained controllability of fractional linear systems with delays in control,” Syst. Control Lett., vol. 106, pp. 9–15, 2017.
  • [27] B. Sikora and J. Klamka, “Cone-type constrained relative controllability of semilinear fractional systems with delays,” Kybernetika, vol. 53, pp. 370–381, 2017.
  • [28] B. Sikora, “On application of Rothe’s fixed point theorem to study the controllability of fractional semilinear systems with delays,” Kybernetika, vol. 55, pp. 675–689, 2019.
  • [29] A. Younus, I. Javaid, and A. Zehra, “On controllability and observability of fractional continuous-time linear systems with regular pencils,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, pp. 297–303, 2017.
  • [30] T. Kaczorek, “Drazin inverse marix method for fractional descriptor continuous-time linear systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 62, pp. 409–412, 2014.
  • [31] T. Kaczorek, “Minimum energy control of positive fractional descriptor continuous-time linear systems,” IET Control Theory Appl., vol. 362, pp. 1–7, 2013.
  • [32] T. Zhan, X. Liu, and S. Ma, “A new singular system approach to output feedback sliding mode control for fractional order nonlinear systems,” J. Franklin Inst., vol. 355, pp. 6746–6762, 2018.
  • [33] S.L. Campbell, C.D. Meyer, and N.J. Rose, “Applications of the Drazin inverse to linear systems of differential equations with singular constant coefficients,” SIAM J. Appl. Math., vol. 31, pp. 411–425, 1976.
  • [34] M.P. Drazin, “Pseudoinverses in associative rings and semi-groups,” Amer. Math. Mountly, vol. 65, pp. 506–514, 1958.
  • [35] Q. Lü and E. Zuazua, “On the lack of controllability of fractional in time ODE and PDE,” Math. Control Signals Syst., vol. 28, no. 2, pp. 1–21, 2016.
  • [36] S. Marir, M. Chadli, and D. Bouagada, “New Admissibility Conditions for Singular Linear Continuous-Time Fractional-Order Systems,” J. Franklin Inst., vol. 354, no. 2, pp. 752–766, 2017.
  • [37] M. Guía, F. Gómez, and J. Rosales, “Analysis on the Time and Frequency Domain for the RC Electric Circuit of Fractional Order,” Cent. Eur. J. Phys., vol. 11, no. 10, pp. 1366–1371, 2013.
  • [38] A. Atangana and B. Alkahtani, “Extension of the resistance, inductance, capacitance electrical circuit to fractional derivative without singular kernel,” Adv. Mech. Eng., vol. 7, pp. 1–6, 2015.
  • [39] A. Alsaedi, J. Nieto, and V. Venktesh, “Fractional electrical circuits,” Adv. Mech. Eng., vol. 7, pp. 1–7, 2015.
  • [40] T. Kaczorek and K. Rogowski, Fractional linear systems and electrical circuits, London, Springer, 2007.
  • [41] R. Banchuin, “Noise analysis of electrical circuits on fractal set,” Compel-Int. J. Comp. Math. Electr. Electron. Eng., vol. 41, pp. 1464–1490, 2022.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5c49c4b-3edc-48bb-a2cd-fef432a5140d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.