Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Biochemical reaction networks may be modeled as biochemical reaction systems consisting of differential equations with rational functions. Biochemical reaction systems are defined as rational positive dynamic systems with inputs and outputs, and illustrated by examples. This formulation makes available the results from algebraic system theory for rational systems and a relation with computer algebra. It is shown how to decompose networks into subsystems and how to relate them to graphs. The realization problem for this class of systems is briefly discussed. Finally, control problems for biochemical reaction networks are formulated.
Czasopismo
Rocznik
Tom
Strony
183--215
Opis fizyczny
Bibliogr. 62 poz., il.
Twórcy
autor
- Department of Mathematics, Institute of Chemical Technology Prague, Techniká 5, 166 28 Prague 6, Czech Republic
autor
- CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
Bibliografia
- 1. Baillieul, J. (1980) The geometry of homogeneous polynomial dynamical systems. Nonlinear Anal. – Theory, Meth. and Appl. 4, 879–900.
- 2. Baillieul, J. (1981) Controllability and observability of polynomial dynamical systems. Nonlinear Anal. – Theory, Meth. and Appl. 5, 543–552.
- 3. Bakker, B.M. (1998) Control and regulation of glycolis in Trypanosoma brucei. PhD thesis, Vrije Universiteit, Amsterdam.
- 4. Bartosiewicz, Z. (1985) A new setting for polynomial continuous-time systems, and a realization theorem. IMA J. Mathematical Control Inf. 2.
- 5. Bartosiewicz, Z. (1987) Rational systems and observation fields. Systems & Control Lett. 9, 379–386.
- 6. Bartosiewicz, Z. (1988) Minimal polynomial realizations. Math. Control Signals Systems 1, 227 – 237.
- 7. Bartosiewicz, Z. (1995) Local observability of nonlinear systems. Systems & Control Lett. 25, 295 – 298.
- 8. Bartosiewicz, Z. and Pawluszewicz, E. (2008) Realizations of nonlinear control systems on time scales. IEEE Trans. Automatic Control 53, 571–575.
- 9. Berman, A., Neumann, M. and Stern, R.J. (1989) Nonnegative Matrices in Dynamic Systems. John Wiley & Sons, New York.
- 10. Birkhoff, G. and MacLane, A. (1977) A Survey of Modern Algebra, fourth edition. MacMillan Publ. Co. Inc., New York.
- 11. Campbell, N.A., Reece, J.B. and Mitchell, L.G. (1999) Biology (Fifth Ed.). Addison Wesley Longoman Inc., Menlo Park.
- 12. Cox, D.A., Little, D.A. and O’Shea, D. (1992) Ideals, Varieties, Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer, Berlin.
- 13. Denis-Vidal, L., Joly-Blanchard, G. and Noiret, C. (2001) Some effective approaches to check the identifiability of uncontrolled nonlinear systems. Mathematics and Computers in Simulation 57, 35–44.
- 14. Diop, S. and Fliess, M. (1991) On nonlinear observability. In: Proc. 1st European Control Conf., Paris. EUCA, Herm`es, 152–157.
- 15. Evans, N.D., Chapman, M.J., Chappell, M.J. & Godfrey, K.R. (2002) Identifiability of uncontrolled nonlinear rational systems. Automatica 38, 1799–1805.
- 16. Fall, C., Marland, E., Wagner, J. and Tyson, J. (2002) Computational Cell Biology. Interdisciplinary Mathematics. Springer, New York, 20.
- 17. Farina, L. and Rinaldi, S. (2000) Positive Linear Systems: Theory and Applications. Pure and Applied Mathematics. John Wiley & Sons, New York.
- 18. Feinberg, M. (1987) Chemical reaction network structure and the stability of complex isothermal reactors I. The deficiency zero and the deficiency one theorems. Chemical Engineering Science 42, 2229–2268.
- 19. Feinberg, M. (1988) Chemical reaction network structure and the stability of complex isothermal reactors II. Multiple steady states for networks of deficiency one. Chemical Engineering Science 43, 1–25.
- 20. Feinberg, M. and Horn, F.J.M. (1974) Dynamics of open chemical systems and the algebraic structure of the underlying reaction network. Chem. Engrg. Sci. 29, 775–787.
- 21. Feinberg, M. and Horn, F.J.M. (1977) Chemical mechanism structure and the coincidence of the stoichiometric and kinetic subspaces. Arch. Rational Mech. Anal. 66, 83–97.
- 22. Fife, D. (1972) Which compartmental systems contain traps? Math. Biosciences 14, 311–315 .
- 23. Foster, D. and Jacquez, J.A. (1975) Multiple zeroes for eigenvalues and the multiplicity of traps in a linear compartmental system. Math. Biosciences 26, 89–97.
- 24. Gerstenhaber, M. (1951) Theory of convex polyhedral cones. In: Tj.C. Koopmans, ed., Activity Analysis of Production and Allocation. Wiley & Sons, New York, 298–316.
- 25. Gondran, M. and Minoux, M. (1984) Graphs and Algorithms. JohnWiley & Sons, Chichester.
- 26. Heinrich, R. and Schuster, S. (1996) The Regulation of Cellular Systems. Chapman and Hall, New York.
- 27. Helfert S., Estévez A., Bakker B., Michels P. & Clayton Ch. (2001) Roles of triosephosphate isomerase and aerobicmetabolism in Trypanosoma brucei. Biochem. J. 357, 117–125.
- 28. Hermann, R. (1977) Algebro-geometric and Lie-theoretic Techniques in Systems Theory – Part A. Interdisciplinary Mathematics XIII, Math. Sci Press.
- 29. Isidori, A. (1989) Nonlinear Control Systems - An Introduction, 2nd Edition. Springer-Verlag, Berlin.
- 30. Isidori, A. (1999) Nonlinear Control Systems II. Communications and Control Engineering Series. Springer-Verlag, London.
- 31. Isidori, A. (2001) Nonlinear Control Systems (3rd. ed.). Springer, Berlin.
- 32. Jacobson, N. (1985) Basic Algebra, Volume 1 (2nd edition). W.H. Freeman and Company, New York.
- 33. Jacquez, J.A. (1985) Compartmental Analysis in Biology and Medicine, 2nd Ed. The University of Michigan Press, Ann Arbor.
- 34. Jacquez, J.A. and Simon, C.P. (1993) Qualitative theory of compartmental systems. SIAM Rev. 35, 43–79.
- 35. Jakubczyk, B. (1980) Existence and uniqueness of realizations of nonlinear systems. SIAM J. Control & Opt. 18, 455–471.
- 36. Klamt, S. and Stelling, J. (2003) Two approaches for metabolic pathway analysis. Trends in Biotechnology 21, 64–69.
- 37. Lam, T.Y. (1999) Lectures on Modules and Rings. Graduate Texts in Mathematics 189, Springer, Berlin.
- 38. Ljung, L. and Glad, T. (1994) Modeling of Dynamic Systems. PTR Prentice Hall, Englewood Cliffs.
- 39. Murota, K. (2000) Matrices and matroids for systems analysis. Algorithmics and Combinatorics 20. Springer-Verlag, Berlin.
- 40. Nĕmcová, J., Petreczky, M. and van Schuppen, J.H. (2009) Realization theory of Nash systems. In: Proc. 48th IEEE Conference on Decision and Control (CDC.2009), New York. IEEE Press, 5935–5940.
- 41. Nĕmcová, (2010) Structural identifiability of polynomial and rational systems. Math. Biosci. 223, 83–96.
- 42.Nĕmcová, J. and van Schuppen, J.H. (2010) Realization theory for rational systems: Minimal rational realizations. Acta Applicandae Mathematicae 110, 605–626.
- 43. Nĕmcová, J. and van Schuppen, J. (2009) Realization theory for national systems: The existence of rational realizations. SIAM J. Control & Opt. 48, 2840 – 2856.
- 44. Nijmeijer, H. and van der Schaft, A.J. (1990) Nonlinear Dynamical Control Systems. Springer-Verlag, Berlin.
- 45. Pohjanpalo, H. (1978) System identifiability based on the power series expansion of the solution. Math. Biosci. 41, 21–33.
- 46. Reinschke, K.J. (1988) Multivariable Control - A Graph-theoretic Approach, Lecture Notes in Control and Informations Sciences 108. Springer-Verlag, Berlin.
- 47. Rockafellar, R.T. (1970) Convex Analysis. Princeton University Press, Princeton.
- 48. Rohwer, J.M. (1997) Interaction of Functional Units in Metabolism. PhD thesis, Vrije Universiteit, Amsterdam.
- 49. Schuster, S., Hilgetag, C., Woods, J.H. & Fell, D.A. (2002) Reaction routes in biochemical reacton systems: Algebraic properties, validated calculation procedure and example from nucleotide metabolism. J. Math. Biol. 45, 153–181.
- 50. Sontag, E.D.(1979) Polynomial Response Maps. Lecture Notes in Control and Information Sciences 13, Springer-Verlag, Berlin.
- 51. Sontag, E.D. (1979) Realization theory of discrete-time nonlinear systems: I. The bounded case. IEEE Trans. Circuits & Systems 26, 342–356.
- 52. Sontag, E.D. (1998) Mathematical Control Theory: Deterministic Finite Dimensional Systems (2nd. Ed.). Graduate Texts in Applied Mathematics 6, Springer, New York.
- 53. Sontag, E.D. (2001) Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor Signac transduction. IEEE Trans. Automatic Control 46, 1028–1047.
- 54. Sontag, E.D. (2002) Asymptotic amplitutes and Cauchy gains: A small-gain principle and an application to inhibitory biological feedback. Systems & Control Lett. 47, 167–179.
- 55. Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S. & Gilles, E. (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature 420, 190–193.
- 56. Sussmann, H.J.(1979) Single-input observability of continuous-time systems. Math. Systems Theory 12, 371–393.
- 57. Travis, C.C. and Haddock, G.(1981) On structural identification. Math. Biosci. 56, 157–173.
- 58. van den Hof, J.M.(1996) System theory and system identification of compartmental systems. PhD thesis, University of Groningen, Groningen.
- 59. van Schuppen, J. H.(2004) System theory of rational positive systems for cell reaction networks. In: Bart De Moor et al., ed., Proc. MTNS.2004, Leuven. Katholieke Universiteit Leuven.
- 60. Walter, E. (1982) Identifiability of State Space Models. Lecture Notes in Biomathematics 46, Springer-Verlag, Berlin.
- 61. Wang, Y. and Sontag, E.D.(1992) Algebraic differential equations and rational control systems. SIAM J. Control & Opt. 30, 1126–1149.
- 62. Xia, X. and Moog, C. (2003) Identifiability of nonlinear systems with application to hiv/aids models. IEEE Trans. Automatic Control 48, 330–336.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5c3dc89-51cd-4ca7-b296-cfca1f215bdf