PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of anodic polarization of 304 stainless steel in choline chloride-based DES solvent on its surface morphology and corrosion resistance

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ polaryzacji anodowej stali nierdzewnej 304 w rozpuszczalniku DES na bazie chlorku choliny na morfologię powierzchni i odporność na korozję
Języki publikacji
EN
Abstrakty
EN
AISI 304 alloy steel was polarized anodically in a deep eutectic solvent based on choline chloride and oxalic acid (1 : 1 molar ratio) at the temperature range of 25–75°C and the current density range of 2.5–45 mA cm−2. No improvement in visual parameters (gloss) was observed with increasing temperature. That was due to the formation of numerous pits on the surface as evidenced by SEM microscopy. AFM showed at lower temperatures the evenly distributed shallow pits, while at higher temperatures – less numerous but larger ones. XPS and ICP-AES analysis showed that the anodic polarization process increased the content of oxidized chromium on the surface and indicated high degree of iron leaching from the material. Morphology of this passive layer, which thickness was calculated to 3.3 nm, was characterized by uniform mixture of Cr(III) oxide and hydroxide. In contrast to chemically etched steel, polarization in DES produced surface layer enriched with Cr2O3 (56% instead of 28% total share) with lower share of Cr(OH)3 (41% instead of 70% total share). Anodic polarization process in proposed DES was responsible for a slight increase in corrosion resistance of 304 steel.
PL
Stal stopową AISI 304 poddano polaryzacji anodowej w rozpuszczalniku eutektycznym złożonym z chlorku choliny i kwasu szczawiowego (1 : 1 molowo) w temperaturze 25–75°C i przy gęstości prądu 2,5– 45 mA cm−2. Nie zaobserwowano poprawy połysku wraz ze wzrostem temperatury procesu ze względu na powstanie licznych wżerów na powierzchni, widocznych za pomocą mikroskopii SEM. Analiza AFM wykazała, że w niższych temperaturach wżery są płytkie i równomiernie rozmieszczone, a w wyższych są większe i mniej liczne. Analizy XPS i ICP-AES ujawniły, że na skutek polaryzacji anodowej wzrasta ilość utlenionego chromu w powierzchni stali, czemu towarzyszy nadmierne roztwarzanie żelaza ze stopu. Morfologia wytworzonej warstwy pasywnej, o grubości około 3,3 nm, to jednorodna mieszanina tlenku i wodorotlenku Cr(III). W porównaniu z trawioną chemicznie stalą polaryzacja anodowa w DES skutkuje wytworzeniem warstwy powierzchniowej wzbogaconej w Cr2O3 (56% zamiast 28% zawartości) i z mniejszym udziałem Cr(OH)3 (41% zamiast 70%). Proces polaryzacji anodowej stali 304 w zaproponowanym DES przyczynił się do poprawy odporności na korozję.
Rocznik
Tom
Strony
96--105
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Group of Surface Technology, Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
  • Group of Surface Technology, Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
  • Group of Surface Technology, Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
Bibliografia
  • [1] J. J. Milledge. 2010. “The Cleanability of Stainless Steel Used as a Food Contact Surface: An Updated Short Review.” Food Science and Technology 24(4): 27–28.
  • [2] A. K. Dewangan, A. D. Patel, A. G. Bhadania. 2015. “Stainless Steel for Dairy and Food Industry: A Review.” Journal of Material Science and Engineering 4(5): 191. DOI: 10.4172/2169-0022.1000191.
  • [3] C. Jullien, T. Bénézech, B. Carpentier, V. Lebret, C. Faille. 2003. “Identification of Surface Characteristics Relevant to the Hygienic Status of Stainless Steel for the Food Industry.” Journal of Food Engineering 56(1): 77–87. DOI: 10.1016/S0260-8774(02)00150-4.
  • [4] R. A. Covert, A. H. Tuthill. 2000. “Stainless Steels: An Introduction to Their Metallurgy and Corrosion Resistance.” Dairy, Food, and Environmental Sanitation 20(7): 506–517.
  • [5] J. F. Frank, R. Chmielewski. 2001. “Influence of Surface Finish on the Cleanability of Stainless Steel.” Journal of Food Protection 64(8): 1178–1182. DOI: 10.4315/0362-028X-64.8.1178.
  • [6] J. W. Arnold, G. W. Bailey. 2000. “Surface Finishes on Stainless Steel Reduce Bacterial Attachment and Early Biofilm Formation: Scanning Electron and Atomic Force Microscopy Study.” Poultry Science 79(12): 1839–1845. DOI: 10.1093/ps/79.12.1839.
  • [7] S. Mohan, D. R. Kanagaraj, R. Sindhuja, S. Vijayalakshmi, N. G. Renganathan. 2001. “Electropolishing of Stainless Steel — a Review.” Transactions of the IMF 79: 140–142. DOI: 10.1080/00202967.2001.11871382.
  • [8] G. Yang, B. Wang, K. Tawfiq, H. Wei, S. Zhou, G. Chen. 2017. “Electropolishing of Surfaces: Theory and Applications.” Surface Engineering 33(2): 149–166. DOI: 10.1080/02670844.2016.1198452.
  • [9] W. Abdussalam-Mohammed, A. Qasem Ali, A. O. Errayes. 2020. “Green Chemistry: Principles, Applications, and Disadvantages.” Chemical Methodologies 4(4): 408–423. DOI: 10.33945/SAMI/CHEMM.2020.4.4.
  • [10] E. L. Smith, A. P. Abbott, K. S. Ryder. 2014. “Deep Eutectic Solvents (DESs) and Their Applications.” Chemical Reviews 114(21): 11060–11082. DOI: 10.1021/cr300162p.
  • [11] A. P. Abbott, G. Frisch, J. Hartley, W. O. Karim, K. S. Ryder. 2015. “Anodic Dissolution of Metals in Ionic Liquids.” Progress in Natural Science: Materials International 25(6): 595–602. DOI: 10.1016/j.pnsc.2015.11.005.
  • [12] A. P. Abbott, K. S. Ryder, U. König. 2008. “Electrofinishing of Metals Using Eutectic Based Ionic Liquids.” Transactions of the IMF 86(4): 196–204. DOI: 10.1179/174591908X327590.
  • [13] A. P. Abbott, G. Capper, K. J. McKenzie, A. Glidle, K. S. Ryder. 2006. “Electropolishing of Stainless Steels in a Choline Chloride Based Ionic Liquid: An Electrochemical Study with Surface Characterisation Using SEM and Atomic Force Microscopy.” Physical Chemistry Chemical Physics 8(36): 4214–4221. DOI: 10.1039/B607763N.
  • [14] J. Winiarski, M. Marczewski, M. Urbaniak. 2021. “On the Anodic Polarization of 316 Steel in a Choline Chloride: Ethylene Glycol Deep Eutectic Solvent and Its Impact on the Surface Topography and Corrosion Resistance.” Ochrona przed Korozją 64(1): 3–7. DOI: 10.15199/40.2021.1.1.
  • [15] M. Hayyan, M. A. Hashim, A. Hayyan, M. A. Al-Saadi, I. M. AlNashef, M. E. S. Mirghani, O. K. Saheed. 2013. “Are Deep Eutectic Solvents Benign or Toxic?” Chemosphere 90(7): 2193–2195. DOI: 10.1016/j.chemosphere.2012.11.004.
  • [16] J. Winiarski, M. Marczewski, W. Tylus. 2019. “Corrosion Resistance of 304 Stainless Steel after Anodic Polarization in Choline Chloride-Oxalic Acid Non-Aqueous Bath.” Ochrona przed Korozją 62(3): 78–81. DOI: 10.15199/40.2019.3.3.
  • [17] A.-M. Popescu, V. Constantin, M. Olteanu, O. Demidenko, K. Yanushkevich. 2011. “Obtaining and Structural Characterization of the Electrodeposited Metallic Copper from Ionic Liquids.” Revista de Chimie 62(6): 626–631.
  • [18] N. Dsouza, M. Appleton, A. Ballantyne, A. Cook, R. Harris, K. S. Ryder. 2014. “Removal of Casting Defects from CMSX-4® and CMSX-10® Alloys by Electropolishing in a Novel Electrolyte; Deep Eutectic Solvent.” MATEC Web of Conferences 14: 13007. DOI: 10.1051/matecconf/20141413007.
  • [19] ISO 4301-304-00-I.
  • [20] A.-M. Popescu, C. Donath, V. Constantin. 2014. “Density, Viscosity, and Electrical Conductivity of Three Choline Chloride Based Ionic liquids.” Bulgarian Chemical Communications 46(3): 452–457.
  • [21] E. Łyczkowska-Widłak, P. Lochyński, G. Nawrat. 2020. “Electrochemical Polishing of Austenitic Stainless Steels.” Materials 13(11): 2557. DOI: 10.3390/ma1311255.
  • [22] D. J. Arrowsmith, A. W. Clifford. 1980. “The Influence of Copper on the Electropolishing of Stainless Steel.” Transactions of the IMF 58(1): 63–66. DOI: 10.1080/00202967.1980.11870527.
  • [23] M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, R. S. C. Smart. 2011. “Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides, and Hydroxides: Cr, Mn, Fe, Co, and Ni.” Applied Surface Science 257(7): 2717–2730. DOI: 10.1016/j.apsusc.2010.10.051.
  • [24] http://www.xpsfitting.com/search/label/Chromium (access: 28.05.2021).
  • [25] B. R. Strohmeier. 1990. “An ESCA Method for Determining the Oxide Thickness on Aluminum Alloys.” Surface and Interface Analysis 15: 51–56. DOI: 10.1002/sia.740150109.
  • [26] M. C. Biesinger, B. P. Payne, L. W. M. Lau, A. Gerson, R. S. C. Smart. 2009. “X-ray Photoelectron Spectroscopic Chemical State Quantification of Mixed Nickel Metal, Oxide, and Hydroxide Systems.” Surface and Interface Analysis 41(4): 324–332. DOI: 10.1002/sia.3026.
  • [27] A. Laszczyńska, W. Tylus, J. Winiarski, I. Szczygieł. 2017. “Evolution of Corrosion Resistance and Passive Film Properties of Ni-Mo Alloy Coatings during Exposure to 0.5 M NaCl Solution.” Surface and Coatings Technology 317: 26–37. DOI: 10.1016/j.surfcoat.2017.03.043.
  • [28] V. Zatkalíková, L. Markovičová. 2019. “Corrosion Resistance of Electropolished AISI 304 Stainless Steel in Dependence of Temperature.” IOP Conference Series: Materials Science and Engineering 465(1): 012011. DOI: 10.1088/1757-899X/465/1/012011.
  • [29] S. Gao, C. Dong, H. Luo, K. Xiao, X. Li. 2014. “Electrochemical Behavior and Nonlinear Mott-Schottky Characterization of a Stainless Steel Passive Film.” Analytical Letters 47(7): 1162–1181. DOI: 10.1080/00032719.2013.865201.
  • [30] F. Mohammadi, T. Nickchi, M. M. Attar, A. Alfantazi. 2011. “EIS Study of Potentiostatically Formed Passive Film on 304 Stainless Steel.” Electrochimica Acta 56(24): 8727–8733. DOI: 10.1016/j.electacta.2011.07.072.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5c278da-e341-48a5-965d-ee5c4ef1313d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.