PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fluorowany motyw w aktywnych biologicznie peptydomimetykach

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Fluorinated motif in biologically active peptidomimetics
Języki publikacji
PL
Abstrakty
EN
Incorporation of fluorine atom or fluoroalkyl group into molecules, often induces a remarkable effect upon the physical and chemical properties leading to significant changes of its reactivity [1-5], therefore this modification is often used in the synthesis of drugs and biologically active compounds [6, 7]. The change in reactivity has far-reaching consequences, affects bond energy in the molecule, acidity and alkalinity, hydrogen bond formation and the geometry of the molecule [1-5]. The change in acid-base properties and polarity forced by a fluorine or fluorinated motif in the modified amino acid or peptide molecule has already found numerous applications in bioisosteric mimetics [9]. In addition, using a fluorine atom as a probe, conformation determination and stereochemistry of receptor interaction become more effective due to the possibility of using 19F NMR spectroscopy. The stereoselective introduction of fluorine atoms can therefore be exploited as a conformational tool for the synthesis of shape-controlled functional molecules. Particular attention has been paid to fluorinated peptidomimetics due to the huge variety of their biological activity. Proteins play a significant role in drug design and synthesis. Peptide binding in living organisms is quite labile which is associated with the presence of proteolytic enzymes. Therefore, to prevent protein hydrolysis, new, modified compounds are thought to mimic the properties and functions of peptide bond. These types of compounds are called peptidomimetics. In this monograph, we will focus on the biologically active fluorinated peptidomimetics, in which the amide bond has been replaced by a fluorinated group and thus they can "mimic" peptide bond functions (pseudopeptides). Other peptidomimetics with typical amide bond, but in which the remaining part of the molecule has been modified by introducing a fluorinated group or fluorine (peptide analogs) will also be discussed. The main goal of this work, however, is to demonstrate the beneficial effect of fluorine on the properties of the modified compounds and associated with it consequences. The superior goal of this work, however, is to demonstrate the unique effect of fluorine on the properties of the target compounds and in the design of higher order structures reflecting a more sophisticated molecular construction that broadens biological mimesis.
Rocznik
Strony
145--179
Opis fizyczny
Bibliogr. 92 poz., schem.
Twórcy
  • Wydział Chemii, Uniwersytet im. Adama Mickiewicza w Poznaniu ul. Uniwersytetu Poznańskiego 8, 60-614 Poznań
  • Wydział Chemii, Uniwersytet im. Adama Mickiewicza w Poznaniu ul. Uniwersytetu Poznańskiego 8, 60-614 Poznań
Bibliografia
  • [1] J.T. Welch, Tetrahedron, 1987, 43, 3123.
  • [2] J. Mann, Chem. Soc. Rev., 1987, 16, 381.
  • [3] J.P. Begue, D. Bonnet-Delpon, Bioorganic and Medicinal Chemistry of Fluorine, John Wiley & Sons, Inc., Hoboken, New Jersey, 2008.
  • [4] D. O’Hagan, Chem. Soc. Rev., 2008, 37, 308
  • [5] B.E. Smart, J. Fluorine Chem., 2001, 109, 3.
  • [6] W.K. Hagmann, J. Med. Chem., 2008, 51 (15), 4359.
  • [7] J. Wang, M. Sánchez-Roselló, J.L. Асета, С. del Pozo, A.E. Sorochinsky, S. Fustero, V.A. Soloshonok, H. Liu, Chem. Rev., 2014, 114, 2432.
  • [8] J. Emsley, Chemia. Przewodnik po pierwiastkach. Wydawnictwo Naukowe PWN, Warszawa 1997.
  • [9] N.A. Meanwell, J. Med. Chem., 2018, 61 (14), 5822.
  • [10] C. Jäckel, W. Seufert, S. Thust, B. Koksch, ChemBioChem, 2004, 5, 717.
  • [11] A A. Berger, J.S. Völler, N. Budisa, B. Koksch, Acc. Chem. Res., 2017, 50, 2093.
  • [12] M. Salwiczek, E.K. Nyakatura, U.I.M. Gerling, S. Ye, B. Koksch, Chem. Soc. Rev., 2012, 41, 2135.
  • [13] G. Haufe, S. Krüger, Amino Acids, 1996, 11, 409.
  • [14] X.L. Qiu, W.D. Meng, F.L. Qing, Tetrahedron, 2004, 60, 6711.
  • [15] B. Hart, W. Haile, N. Licato, W. Bolanowska, J. McGuire, J. Coward, J. Med. Chem., 1996, 39, 56.
  • [16] C.R.S. Briggs, D. O’Hagan, J.A.K. Howard, D.S. Yufit, J. Fluorine Chem., 2003, 119, 9.
  • [17] J.W. Banks, A.S. Batsanov, J.A.K. Howard, D. O’Hagan, H.S. Rzepa, S. Martin-Santamaria, J. Chem. Soc., Perkin Trans., 1999, 2, 2409.
  • [18] G. Deniau, A.M.Z. Slawin, T. Lebl, F. Chorki, J.P. Issberner, T. van Mourik, J.M. Heygate, J.J. Lambert, L.A. Etherington, K.T. Sillar, D. O’Hagan, ChemBioChem, 2007, 8, 2265.
  • [19] I. Yamamoto, G.P. Deniau, N. Gavande, M. Chebib, G.A.R. Johnston, D. O’Hagan, Chem. Commun., 2011, 47, 7956.
  • [20] M.D. Clift, H. Ji, G.P. Deniau, D. O’Hagan, R.B. Silverman, Biochemistry, 2007, 46, 13819.
  • [21] D.L. Crittenden, M. Chebib, M.J.T. Jordan, J. Mol. Struct.: THEOCHEM, 2005, 755, 81.
  • [22] L. Hunter, K. A. Jolliffe, M.J.T. Jordan, P. Jensen, R.B. MacQuart, Chem. - Eur. J., 2011, 17, 2340.
  • [23] I. Yamamoto, M.J.T. Jordan, N. Gavande, M.R. Doddareddy, M. Chebib, L. Hunter, Chem. Commun., 2012, 48, 829.
  • [24] P.W. Chia, M.R. Livesey, A.M.Z. Slawin, T. Van Mourik, D.J.A. Wyllie, D. O’Hagan, Chem. - Eur. J., 2012, 18, 8813.
  • [25] C.E. Jakobsche, A. Choudhary, S.J. Miller, R.T. Raines, J. Am. Chem. Soc., 2010, 132, 6651.
  • [26] R.W. Newberry, B. Van Veller, I.A. Guzei, R.T. Raines, J. Am. Chem. Soc., 2013, 135, 7843.
  • [27] J.A. Hodges, R.T. Raines, J. Am. Chem. Soc., 2003, 125, 9262.
  • [28] P.A. Champagne, J. Desroches, J.F. Paquin, Synthesis, 2015, 47, 306.
  • [29] J.F. Nadon, K. Rochon, S. Grastilleur, G. Langlois, T.T.H. Dao, V. Blais, B. Guérin, L. Gendron, Y. L. Dory, ACS Chem. Neurosci., 2017, 8, 40.
  • [30] S.N. Karad, M. Pal, R.S. Crowley, T.E. Prisinzano, R.A. Altman, ChemMedChem, 2017, 12, 571.
  • [31] R.A. Altman, K.K. Sharma, L.G. Rajewski, P.C. Toren, M.J. Baltezor, M. Pal, S.N. Karad, ACS Chem. Neurosci., 2018, 9, 1735.
  • [32] M. Drouin, J. Laxio Arenas, J.F. Paquin, ChemBioChem, 2019, 20, 1817.
  • [33] K. Valkó, C. Bevan, D. Reynolds, Anal. Chem., 1997, 69 (11), 2022.
  • [34] W. Chang, R.T. Mosley, S. Bansal, M. Keilman, A.M. Lam, P.A. Furman, M.J. Otto, M.J. Sofia, Bioorg. Med. Chem. Lett., 2012, 22, 2938.
  • [35] R. Waelchli, R. Gamse, W. Bauer, H. Meigel, E. Lier, J.H.M. Feyen, Bioorg. Med. Chem. Lett., 1996, 6, 1151.
  • [36] L.G. Boros, B. DeCorte, R.H. Gimi, J.T. Welch, Y. Wuand, R.E. Handschumacher, Tetrahedron Lett., 1994, 35, 6033.
  • [37] J.T. Welch, J. Lin, Tetrahedron, 1996, 52, 291.
  • [38] J. Lin, P.J. Toscano, J.T. Welch, Proc. Natl. Acad. Sci. USA., 1998, 95, 14020.
  • [39] K. Zhao, D.S. Lim, T. Funaki, J.T. Welch, Bioorg. Med. Chem., 2003, 11, 207.
  • [40] P. Van der Veken, I. Kertesz, K. Senten, A. Haemers, K. Augustyns, Tetrahedron Lett., 2003, 44, 6231.
  • [41] P. Van der Veken, K. Senten, I. Kertesz, I. De Meester, A.M. Lambeir, M.B. Maes, S. Schärpe, A. Haemers, K. Augustyns, J. Med. Chem., 2005, 48, 1768.
  • [42] C. Dalvit, S.Y. Ko, A. Vulpetti, J. Fluor. Chem., 2013, 152, 129.
  • [43] B.E. McKinney, J.J. Urban, J. Phys. Chem. A., 2010, 114, 1123.
  • [44] V. Eeda, M. Selvaraju, R.A. Altman, J. Fluor. Chem., 2019, 218, 90.
  • [45] M. Zanda, New J. Chem., 2004, 28, 1401.
  • [46] H. Mei, J. Han, K.D. Klika, K. Izawa, T. Sato, N.A. Meanwell, V.A. Soloshonok, Eur. J. Med. Chem., 2019, 18, 111826.
  • [47] S. Fustero, G. Chiva, J. Piera, J.F. Sanz-Cervera, A. Volonterio, M. Zanda, C.R. De Arellano, J. Org. Chem., 2009, 74, 3122.
  • [48] M. Sani, A. Volonterio, M. Zanda, ChemMedChem, 2007, 2, 1693.
  • [49] A. Brusoe, J.F. Hartwig, J. Am. Chem. Soc., 2015, 137, 8460.
  • [50] A. Volonterio, S. Bellosta, F. Bravin, M.C. Bellucci, L. Bruche, G. Colombo, L. Malpezzi, S. Mazzini, S.V. Meille, M. Meli, C. Ramirez de Arellano, M. Zanda, Chem. Eur. J., 2003, 9, 4510.
  • [51] M. Molteni, C. Pesenti, M. Sani, A. Volonterio, M. Zanda, J. Fluorine Chem., 2004, 125, 1735.
  • [52] M. Molteni, M.C. Bellucci, S. Bigotti, S. Mazzini, A. Volonterio, M. Zanda, Org. Biomol. Chem., 2009, 7, 2286.
  • [53] C.R. Butler, K. Ogilvie, L. Martinez-Alsina, G. Barreiro, E.M. Beck, C.E. Nolan, K. Atchison, E. Benvenuti, L. Buzon, S. Doran, C. Gonzales, C.J. Helal, X. Hou, M.H. Hsu, E.F. Johnson, K. Lapham, L. Lanyon, K. Parris, B.T. O’Neill, D. Riddell, A. Robshaw, F. Vajdos, M.A. Brodney, J. Med. Chem., 2017, 60, 386.
  • [54] G. Chen, H. Ren, A. Turpoff, A. Arefolov, R. Wilde, J. Takasugi, A. Khan, N. Almstead, Z. Gu, T. Komatsu, C. Freund, J. Breslin, J. Colacino, J. Hedrick, M. Weetall, G.M. Karp, Bioorg. Med. Chem. Lett., 2013, 23, 3942.
  • [55] X. Zhang, N. Zhang, G. Chen, A. Turpoff, H. Ren, J. Takasugi, C. Morrill, J. Zhu, C. Li, W. Lennox, S. Paget, Y. Liu, N. Almstead, F.G. Njoroge, Z. Gu, T. Komatsu, V. Clausen, C. Espiritu, J. Graci, J. Colacino, F. Lahser, N. Risher, M. Weetall, A. Nomeir, G.M. Karp, Bioorg. Med. Chem. Lett., 2013, 23, 3947.
  • [56] N. Zhang, X. Zhang, X. J. Zhu, A. Turpoff, G. Chen, C. Morrill, S. Huang, W. Lennox, R. Kakarla, R. Liu, C. Li, H. Ren, N. Almstead, N.S. Venkatraman, F.G. Njoroge, Z. Gu, V. Clausen, J. Graci, S.P. Jung, Y. Zheng, J.M. Colacino, F. Lahser, J. Sheedy, A. Mollin, M. Weetall, A. Nomeir, G.M. Karp, J. Med. Chem., 2014, 57, 2121.
  • [57] S. Huhmann, B. Koksch, Eur. J. Org. Chem. 2018, 2018, 3667.
  • [58] H. Meng, S.T. Krishnaji, M. Beinborn, K. Kumar, J. Med. Chem., 2008, 51, 7303.
  • [59] V. Asante, J. Mortier, H. Schlüter, B. Koksch, Bioorg. Med. Chem., 2013, 21, 3542.
  • [60] S. Huhmann, A.K. Stegemann, K. Folmert, D. Klemczak, J. Moschner, M. Kube, B. Koksch, Beilstein J. Org. Chem., 2017, 13, 2869.
  • [61] S. Tambaro, R. Reali, A. Volonterio, M. Zanda, F. Olimpieri, G. A. Pinna, P. Lazzari, Pharmacol. Biochem. Behav., 2013, 110, 137.
  • [62] F. Narjes, K.F. Koehler, U. Koch, B. Gerlach, S. Colarusso, C. Steinkuhler, M. Brunetti, S. Altamura, R. De Francesco, V.G. Matassa, Bioorg. Med. Chem. Lett., 2002, 12, 701.
  • [63] S. Di Marco, M. Rizzi, C. Volpari, M.A. Walsh, F. Narjes, S. Colarusso, R. De Francesco, V.G. Matassa, M.J. Sollazzo, J. Biol. Chem., 2000, 275, 7152.
  • [64] U.I.M. Gerling, M. Salwiczek, C.D. Cadicamo, H. Erdbrink, S. Grage, P. Wadhwani, A. Ulrich, M. Behrends, G. Haufe, C. Czekelius, B. Koksch, Chem. Sci., 2014, 5, 819.
  • [65] K. Pagel, S.C. Wagner, R.R. Araghi, H. von Berlepsch, C. Böttcher, B. Koksch, Chem. - Eur. J., 2008, 14, 11442.
  • [66] C. Jäckel, M.Salwiczek, B. Koksch, Angew. Chem., Int. Ed., 2006, 45, 4198.
  • [67] M. Salwiczek, S. Samsonov, T. Vagt, E.K. Nyakatura, E. Fleige, J. Numata, M.T. Cölfen, B. Pisabarro, Koksch, Chem. - Eur. J., 2009, 15, 7628.
  • [68] M. Salwiczek, B. Koksch, ChemBioChem, 2009, 10, 2867.
  • [69] V. Asante, J. Mortier, G. Wolber, B. Koksch, Amino Acids, 2014, 46, 2733.
  • [70] D.D. Staas, K.L. Savage, V.L. Sherman, H.L. Shimp, T.A. Lyle, L.O. Tran, C.M. Wiscount, D.R. McMasters, P.E.J. Sanderson, P.D. Williams, B.J. Lucas Jr., J.A. Krueger, S.D. Lewis, R.B. White, S. Yu, B.K. Wong, C.J. Kochansky, M.R. Anari, Y. Yan, J.P. Vacca, Bioorg. Med. Chem., 2006, 14, 6900.
  • [71] C. Held, H. Hübner, R. Kling, Y.A. Nagel, H. Wennemers, P. Gmeiner, ChemMedChem, 2013, 8, 772.
  • [72] A. Testa, X. Lucas, G.V. Castro, K.H. Chan, J.E. Wright, A.C. Runcie, M.S. Gadd, W.T.A. Harrison, E.J. Ko, D. Fletcher, A. Ciulli, J. Am. Chem. Soc., 2018, 140, 29, 9299.
  • [73] B. Bilgiçer, A. Fichera, K. Kumar, J. Am. Chem. Soc., 2001, 123, 4393.
  • [74] Y. Tang, G. Ghirlanda, W.A. Petka, T. Nakajima, W.F. DeGrado, D.A. Tirrell, Angew. Chem., Int. Ed., 2001, 40, 1494.
  • [75] K.H. Lee, H.Y. Lee, M.M. Slutsky, J.T. Anderson, E.N.G. Marsh, Biochemistry, 2004, 43, 16277.
  • [76] C. Renner, S. Alefelder, J.H. Bae, N. Budisa, R. Huber, L. Moroder, Angew. Chem., Int. Ed. 2001, 40, 923.
  • [77] L.K. Doerfel, I. Wohlgemuth, V. Kubyshkin, A.L. Starosta, D.N. Wilson, N. Budisa, M.V. Rodnina, J. Am. Chem. Soc., 2015, 137, 12997.
  • [78] D.B. Berkowitz, M. Eggen, Q. Shen, R.K. Shooemaker, J. Org. Chem., 1996, 61, 4666.
  • [79] Y. Higashimoto, S. Saito, X.H. Tong, A. Hong, K. Sakaguchi, E. Appella, C.W. Anderson, J. Biol. Chem., 2000, 275, 23199.
  • [80] R.J. Cox, A.T. Hadfield, M.B. Mayo-Martin, Chem. Commun., 2001, 1710.
  • [81] G. Liu, Drugs Fut., 2004, 29,1245.
  • [82] T.R. Burke Jr., H.K. Kole, P.P. Roller, Biochem. Biophys. Res. Commun., 1994, 204, 129.
  • [83] T.R. Burke Jr., B. Ye, X. Yan, S. Wang, Z. Zia, L. Chen, Z.Y. Zhang, D. Barford, Biochemistry, 1996, 35, 15989.
  • [84] G. Boutselis, X. Yu, Z.Y. Zhang, R.F. Borch, J. Med. Chem., 2007, 50, 856.
  • [85] S. Zhang, L. Chen, Y. Luo, A. Gunawan, D.S. Lawrence, Z.Y. Zhang, J. Am. Chem. Soc., 2009, 131,13072.
  • [86] V.P. Kukhar, H.R. Hudson (Ed.), Aminophosphonic and Aminophosphinic Acids, John Wiley & Sons Ltd, Chichester, 2000.
  • [87] P. Kafarski, B. Lejczak, Med. Chem.-Anti-Cancer Agents, 2001, 1, 301.
  • [88] J. Grembecka, P. Kafarski, Mini Rev. Med. Chem., 2001, 1, 133.
  • [89] F. Orsini, G. Sello, M. Sisti, Curr. Med. Chem., 2010, 17, 264.
  • [90] P. Van der Veken, K. Senten, I. Kertész, A. Haemers, K. Augustyns, Tetrahedron Lett., 2003, 44, 969.
  • [91] B. Badet, D. Roise, C.T. Walsh, Biochemistry, 1984, 23, 5188.
  • [92] G.A. Flynn, D.W. Beight, E.H.W. Bohme, B.W. Metcalf, Tetrahedron Lett., 1985, 26, 285.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5bd0e5a-038e-4f3b-890a-9c7ce8221f69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.