PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shortening synthesis process of zirconium hydroxide as a hydrolysis product of sodium zirconate

Treść / Zawartość
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
This research was focusing on shortening the process of Zirconium hydroxide (Zr(OH)4) synthesis to get a more efficient process. In the earlier method, Zr(OH)4 was produced through ZOC, which was the product of Na2ZrO3 reacted with HCl. While this study offers a new method to synthesize Zr(OH)4 through the hydrolysis process of sodium zirconate (Na2ZrO3), removing the leaching step of Na2ZrO3 with HCl. The hydrolysis process of Na2ZrO3 was carried out in a multistage stirred reactor at 70°C. The multistage hydrolysis process occurred in 13 stages with 4000 grams of feed and 890 liters of water. This process produced 2500 grams of Zr(OH)4. Then the impurities analysis was done using UV-Vis and atomic absorption spectroscopy (SAA). The UV-Vis analysis was done to analyze Si concentration, while the atomic absorption spectroscopy (SAA) was done to analyze Na concentration. Si and Na concentrations could decrease to 23.98 μg/ml and 1.05 μg/ml, respectively. The Zr(OH)4 contained in the residue was characterized using X-Ray Diffractometer (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). Then, the calcination process of Zr(OH)4 was done at 300°C and 400°C for 1 hour, and characterized using XRD. The XRD result shows crystals of zirconium titanium oxide or srilankite, and SiO2 crystals that are separated from ZrO2 or TiO2 crystals. Surface analysis was done using Scanning Electron Microscope - Energy Dispersive X-Ray (SEM-EDX), the result shows that the hydrolysis process at the 3rd, 7th, and 13th stages have different amorphous crystals with bright colors. At the 13th hydrolysis stage, Zr concentration increased to 63.38%, and Si concentration decreased. Thus, the shorter process of Zr(OH)4 synthesis has been done successfully.
Słowa kluczowe
Rocznik
Strony
art. no. 167965
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
autor
  • Research Center for Mining Technology, National Research and Innovation Agency, Jl. Babarsari Postal Code 6101 ykbb, Yogyakarta 55281, Indonesia
  • Research Center for Mining Technology, National Research and Innovation Agency, Jl. Babarsari Postal Code 6101 ykbb, Yogyakarta 55281, Indonesia
  • Deputy for Research and Innovation Infrastructure, National Research and Innovation Agency, Jl. Babarsari Postal Code 6101 ykbb, Yogyakarta 55281, Indonesia
  • Deputy for Research and Innovation Infrastructure, National Research and Innovation Agency, Jl. Babarsari Postal Code 6101 ykbb, Yogyakarta 55281, Indonesia
Bibliografia
  • AGHAZADEH, M., BARMI, A. A. M., HOSSEINIFARD, M., 2012. Nanoparticulates Zr(OH) 4 and ZrO 2 prepared by low-temperature cathodic electrodeposition. Materials Letters. 73, 28–31.
  • BARNUM, D. W., 1983. Hydrolysis of Cations. Formation Constants and Standard Free Energies of Formation of Hydroxy Complexes. Inorganic Chemistry. 22(16), 2297–2305.
  • BAUTISTA-RUIZ, J., APERADOR, W., DELGADO, A., DÍAZ-LAGOS, M,. 2014. Synthesis and characterization of anticorrosive coatings of SiO2 -TiO2 - ZrO2 obtained from sol-gel suspensions. International Journal of Electrochemical Science. 9(8), 4144–4157.
  • BEYER, G. H., SPINK, D. R., WEST, J. B., WILHELM, H. A., 1954. Caustic Treatment of Zircon Sand. Ames Laboratory ISC Technical Reports. 66.
  • BINGZHUO, C., LU, Y., YING, C., HUAIQIN, Z., HAIFENG, X., FENG, H., 2018. Effects of nano-zirconium hydroxide coating on resin bonding of 10-methacryloxy decyldihydrogen phospate-conditoned. West China Journal of Stomatology. 36(3), 252–256.
  • BISWAS, R. K., HABIB, M. A., ISLAM, M. R., 2010. A novel method for processing of Bangladeshi zircon: Part II: Leaching of zircon-caustic fused mass by hydrochloric acid. Hydrometallurgy. 103(1–4), 130–135.
  • BISWAS, R. K., HABIB, M. A., KARMAKAR, A. K., ISLAM, M. R., 2010. A novel method for processing of Bangladeshi zircon: Part I: Baking, and fusion with NaOH. Hydrometallurgy. 103(1–4), 124–129.
  • CATAURO, M., BARRINO, F., BONONI, M., COLOMBINI, E., GIOVANARDI, R., VERONESI, P., TRANQUILLO, E., 2019. Coating of titanium substrates with ZrO2 and ZrO2 -SiO2 composites by sol-gel synthesis for biomedical applications: Structural characterization, mechanical and corrosive behavior. Coatings. 9(3).
  • DOU, X., MOHAN, D., PITTMAN, C. U., YANG, S., 2012. Remediating fluoride from water using hydrous zirconium oxide. Chemical Engineering Journal. 198–199, 236–245.
  • GEORGE, A., SEENA, P. T., 2012. Thermal studies on zirconium hydroxide gel formed by aqueous gelation. Journal of Thermal Analysis and Calorimetry. 110(3), 1037–1041.
  • GLOVER, T. G., PETERSON, G. W., DECOSTE, J. B., BROWE, M. A., 2012. Adsorption of ammonia by sulfuric acid treated zirconium hydroxide. Langmuir. 28(28), 10478–10487.
  • HUANG, C., TANG, Z., ZHANG, Z., 2001. Differences between Zirconium Hydroxide (Zr(OH)4.nH2O) and Hydrous Zirconia (ZrO2.nH2O). Journal of the American Ceramic Society. 84(7), 1637–1638.
  • HUSSAIN, J., ZHANG, J., LINA, X., HUSSAIN, K., SHAH, S. Y. A., ALI, S., HUSSAIN, A., 2022. Resource Assessment of Limestone Based on Engineering and Petrographic Analysis. Civil Engineering Journal (Iran). 8(3), 421–437.
  • KIEN, P. H., MONESAYKHAM, T., TRANG, G. T. T., 2022. Molecular Dynamics Simulation to Investigate the Effect of Al2O3 Doping and Compression on the Structural Properties of Aluminium Silicate Glass. Journal of Human, Earth, and Future. 3(2), 168–181.
  • KOBAYASHI, T., UEMURA, T., SASAKI, T., TAKAGI, I., MORIYAMA, H., 2016. The solubilities and solubility products of zirconium hydroxide and oxide after aging at 278, 313, and 333 K. Radiochimica Acta. 104(3), 183–193.
  • LIU, H., WANG, R., JIANG, H., GONG, H., WU, X., 2015. Study on adsorption characteristics of uranyl ions from aqueous solutions using zirconium hydroxide. Journal of Radioanalytical and Nuclear Chemistry.
  • LONG, H. V., 2021. Optimizing mixtures of alkali aluminosilicate cement based on ternary by-products. Civil Engineering Journal (Iran). 7(7), 1264–1274.
  • MA, Y., ZHANG, X., WEN, J., 2021. Study on the Harm of Waste Activated Carbon and Novel Regeneration Technology of it. IOP Conference Series: Earth and Environmental Science. 769(2).
  • MEZA GALVES, J., OLEA MEJÍA, O., HERNÁNDEZ LÓPEZ, S., VIGUERAS SANTIAGO, E., CAMACHO LÓPEZ, M. A., 2018. Amorphous Zr(OH)4 to t-ZrO2 transformed isothermally. Superficies y Vacío. 31(3), 44–47.
  • MONDAL, A., RAM, S., 2004. Reconstructive phase formation of ZrO2 nanoparticles in a new orthorhombic crystal structure from an energized porous ZrO(OH)2xH2O precursor. Ceramics International. 30(2), 239–249.
  • MUZAKKY., SUDARYADI., 2019. FTIR for controls of stoichiometry reaction of alkali fusion zirkon with NaOH. Ganendra Journal of Nuclear Science and Technology. 23(1), 19–27.
  • OUDEJANS, L., 2014. Adsorption and Desorption of Chemical Warfare Agents on Activated Carbon : Impact of Temperature and Relative Humidity Adsorption and Desorption of Chemical Warfare Agents on Activated Carbon : Impact of Temperature and Relative Humidity. 261, EPA 600/R-14.
  • PETERSON, G. W., ROSSIN, J. A., 2012. Removal of chlorine gases from streams of air using reactive zirconium hydroxide based filtration media. Industrial and Engineering Chemistry Research. 51(6), 2675–2681.
  • PETERSON, G. W., WAGNER, G. W., KELLER, J. H., ROSSIN, J. A., 2010. Enhanced cyanogen chloride removal by the reactive zirconium hydroxide substrate. Industrial and Engineering Chemistry Research. 49(22), 11182–11187.
  • SINGH, J., MUKHERJEE, A., SENGUPTA, S. K., IM, J., PETERSON, G. W., WHITTEN, J. E., 2012. Sulfur dioxide and nitrogen dioxide adsorption on zinc oxide and zirconium hydroxide nanoparticles and the effect on photoluminescence. Applied Surface Science. 258(15), 5778–5785.
  • SUBUKI, I., MOHSIN, M. F., ISMAIL, M. H., FADZIL, F. S. M., 2020. Study of the synthesis of zirconia powder from zircon sand obtained from zircon minerals malaysia by caustic fusion method. Indonesian Journal of Chemistry. 20(4), 782–790.
  • URAL, Ç., KÜLÜNK, T., KÜLÜNK, Ş., KURT, M., 2010. The effect of laser treatment on bonding between zirconia ceramic surface and resin cement. Acta Odontologica Scandinavica. 68(6), 354–359.
  • WU, Y., CAI, T., ZHAO, W., CHEN, X., LIU, H., WANG, Y., RUSSEL, A. G., FAN, M., LIU, D., 2018. First-principles and experimental studies of [ZrO(OH)]+ or ZrO(OH)2 for enhancing CO2 desorption kinetics-imperative for significant reduction of CO2 capture energy consumption. Journal of Materials Chemistry A. 6(36), 17671–17681.
  • YAMAGATA, C., ANDRADE, J. B., USSUI, V., LIMA, N. B., PASCHOAL, J. O. A., 2008. High purity zirconia and silica powders via wet process: Alkali fusion of zircon sand. Materials Science Forum. 591–593, 771–776.
  • ZHANG, R., HE, D., 2012. Effect of alcohol solvents treated ZrO(OH)2 hydrogel on properties of ZrO2 and its catalytic performance in isosynthesis. Journal of Natural Gas Chemistry. 21(1), 1–6.
  • ZHUKOV, A. V., CHIZHEVSKAYA, S. V., PHYO, P., PANOV, V. A., 2019. Heterophase Synthesis of Zirconium Hydroxide from Zirconium Oxychloride. Inorganic Materials. 55(10), 994–1000.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Identyfikator YADDA
bwmeta1.element.baztech-c5b7c581-72e0-4ef1-a71d-4575317d763d