Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The global industrial economy is heavily reliant on fossil fuels, but their depletion and environmental impact require a rapid shift to low-carbon energy sources. Coastal lagoons offer a potential sustainable energy source through the extraction of energy from tidal currents at different water depths. Therefore, the measurement of currents in each depth layer is crucial for determining suitable locations and studying the feasibility of harnessing this renewable energy through tidal power generation technologies. This study focuses on evaluating the potential of tidal currents for generating marine renewable energy in the Khenifiss Lagoon, a protected area in southern Morocco, for local use, with the goal of supporting the sustainability of this ecosystem. The lagoon’s hydrodynamics are primarily dominated by tides, with the semi-diurnal component (M2) dominating the tidal cycle (period of 12 h 25) with 1.5 to 3.2 m of tidal range. The Multicell Argonaut-XR ADCP is employed to measure current velocities over two days at two specific stations within the lagoon without the intention of establishing a comparative analysis between them. Station 1 has 1 m intervals across an 8 m depth, and Station 2 has 0.5 m intervals across a 5 m depth. The results reveal that at Station 1, layers 2, 3, 4, and 5 (-2 to -5 m depth) exhibited consistent current velocity conditions, making them well-suited for power density conversion. The average power density range in these layers ranged from 54.926 W/m2 to 65.223 W/m2. Similarly, at Station 2, layers 2, 3, 4, 5, and 6 (-2.5 to -4.5 m depth) displayed favorable current velocity conditions for power density conversion, with an average power density range of 23.911 W/m2 to 36.630 W/m2 . This work establishes a foundation for more detailed tidal current resource assessments for future tidal energy development in the Khenifiss lagoon and such a semi-enclosed natural system.
Wydawca
Rocznik
Tom
Strony
278--289
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
- Research Laboratory in applied and marine Geosciences, Geotechnics and Geohazards (LR3G), Faculty of Sciences, Abdelmalek Essaâdi University, 93000, Tetouan, Morocco
autor
- Research Laboratory in applied and marine Geosciences, Geotechnics and Geohazards (LR3G), Faculty of Sciences, Abdelmalek Essaâdi University, 93000, Tetouan, Morocco
autor
- Environmental Geology and Natural Resources Laboratory, Faculty of Sciences, Abdelmalek Essaâdi University, 93000, Tetouan, Morocco
autor
- Marine Geosciences and Soil Sciences Laboratory (URAC 45), Department of Earth Sciences, Faculty of Sciences, Chouaïb Doukkali University, El Jadida, Morocco
autor
- Research Laboratory in applied and marine Geosciences, Geotechnics and Geohazards (LR3G), Faculty of Sciences, Abdelmalek Essaâdi University, 93000, Tetouan, Morocco
autor
- Marine Geosciences and Soil Sciences Laboratory (URAC 45), Department of Earth Sciences, Faculty of Sciences, Chouaïb Doukkali University, El Jadida, Morocco
autor
- Applied Geosciences and Geological Engineering, Faculty of Sciences and Technology of AL-Hoceima, Abdelmalek Essaâdi University, 93000, Tetouan, Morocco
autor
- Marine Geosciences and Soil Sciences Laboratory (URAC 45), Department of Earth Sciences, Faculty of Sciences, Chouaïb Doukkali University, El Jadida, Morocco
Bibliografia
- 1. Amimi T., Elbelrhiti K., Adnani M., Elbelrhiti H., Chao J., Oubbih J. 2021. Soil map of Khnifiss lagoon and its surrounding environment. Arabian Journal of Geosciences, 14(6), 515.
- 2. Bahadori A., Nwaoha C., Zendehboudi S., Zahedi G. 2013. An overview of renewable energy potential and utilisation in Australia. Renewable and Sustainable Energy Reviews, 21, 582–589.
- 3. Beaubrun P.C. 1976. La lagune de Khnifiss: premières observations sur les sédiments et l’hydrologie du milieu. Bulletin de l’Institut Scientifique de Rabat, 1, 50–65.
- 4. Bouchkara M., Siagian H., Erraji Chahid N., Joudar I., Hajjaj C., Benazzouz A., Zourarah B., El Khalidi K. 2023. Potential energy power from tidal current in lagoon system – The case of Oualidia Lagoon, Morocco. Ecological Engineering & Environmental Technology, 24(44), 116–127.
- 5. Boyle G. 1996. Renewable energy: power for a sustainable future. Oxford University Press, Oxford.
- 6. Bryden I.G., Grinsted T., Melville G.T. 2004. Assessing the potential of a simple tidal channel to deliver useful energy. Applied Ocean Research, 26(5), 198–204.
- 7. Dal Ferro B. 2006. Wave and tidal energy: Its emergence and the challenges it faces. Refocus, 7(3), 46–48.
- 8. Dubi A.M. 2007. Tidal power potential in the submerged channels of dar es salaam coastal waters. Western Indian Ocean Journal of Marine Science, 5(1), 95104.
- 9. El Behja H., El M’rini A., Nachite D., Abioui M. 2024a. Assessing the spatiotemporal transformation of a coastal lagoon inlet (1984–2019) using remote sensing and GIS: a study of Khenifiss Lagoon in Southern Morocco. Environ Earth Sci 83, 122.
- 10. El Behja H., El M’rini A, Nachite D, Bouchkara M, El Khalidi K, Zourarah B, 2024b. Hydrodynamic modeling of Khenifiss Coastal Lagoon, Southern Atlantic Coast of Morocco: Implications for sediment infilling. Thalassas: An International Journal of Marine Sciences (Accepted for publication)
- 11. El Behja H, El M’rini A, Nachite D, Bouchkara M, El Khalidi K, Zourarah B, Uddin MG, Abioui M. 2024c. Evaluating coastal lagoon sustainability through the driver-pressure-state-impact-response approach: a study of Khenifiss Lagoon, southern Morocco. Frontiers in Earth Science. 12: 1322749.
- 12. Elbelrhiti H., Andreotti B., Claudin P. 2008. Barchan dune corridors: Field characterization and investigation of control parameters. Journal of Geophysical Research: Earth Surface, 113(F2), F02S15.
- 13. El-Geziry T.M., Couch S.J. 2009. Environmental impact assessment for tidal energy schemes: An exemplar case study of the Strait of Messina. Journal of Marine Engineering and Technology, 8(1), 39–48.
- 14. Ellabban O., Abu-Rub H., Blaabjerg F. 2014. Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews, 39, 748–764.
- 15. Garcia Novo P., Kyozuka Y. 2017. Field measurement and numerical study of tidal current turbulence intensity in the Kobe Strait of the Goto Islands, Nagasaki Prefecture. Journal of Marine Science and Technology, 22(2), 335–350.
- 16. Ghefiri K., Garrido A.J., Rusu E., Bouallègue S., Haggège J., Garrido I. 2018. Fuzzy supervision based-pitch angle control of a tidal stream generator for a disturbed tidal input. Energies, 11(11), 2989.
- 17. González-Gorbeña E., Rosman P.C.C., Qassim R.Y. 2015. Assessment of the tidal current energy resource in São Marcos Bay, Brazil. Journal of Ocean Engineering and Marine Energy, 1(4), 421–433.
- 18. Guerra M., Cienfuegos R., Thomson J., Suarez L. 2017. Tidal energy resource characterization in Chacao Channel, Chile. International Journal of Marine Energy, 20, 1–16.
- 19. Hagerman G., Polagye B. 2006. Methodology for estimating tidal current energy resources and power production by tidal in-stream energy conversion (TISEC) devices. Technical Report, Electric Power Research Institute, Palo Alto.
- 20. Hwang I.S., Lee Y.H., Kim S.J. 2009. Optimization of cycloidal water turbine and the performance improvement by individual blade control. Applied Energy, 86(9), 1532–1540.
- 21. IEA 2019. Energy Policies beyond IEA Countries: Morocco 2019. International Energy Agency, Paris.
- 22. Kyozuka Y., Ogawa K. 2006. Tidal Current Power Generation Making Use of a Bridge Pier. In: Proceedings of the OCEANS 2006—Asia Pacific, Singapore, 16–19 May 2006, 1–8.
- 23. Lakhdar Idrissi J., Orbi A., Zidane F., Hilmi K., Sarf F., Massik Z., Makaoui A. 2004. Organization and functioning of a Moroccan ecosystem: Khnifiss lagoon. Journal of Water Science, 17(4), 447–462.
- 24. Mirari S., Aoulad-Sidi-Mhend A., Benmlih A. 2020. Geosites for geotourism, geoheritage, and geoconservation of the khnefiss national park, southern Morocco. Sustainability, 12(17), 7109.
- 25. Multon B. 2013. Marine Renewable Energy Handbook. Wiley, New York.
- 26. Musa S.D., Zhonghua T., Ibrahim A.O., Habib M., 2018. China’s energy status: A critical look at fossils and renewable options. Renewable and Sustainable Energy Reviews, 81(2), 2281–2290.
- 27. Neill S.P., Angeloudis A., Robins P.E., Walkington I., Ward S.L., Masters I., Lewis M.J., Piano M., Avdis A., Piggott M.D., Aggidis G., Evans P., Adcock T.A.A., Židonis A., Ahmadian R., Falconer R. 2018. Tidal range energy resource and optimization – Past perspectives and future challenges. Renewable Energy, 127, 763–778.
- 28. Neill S. P., Haas K. A., Thiébot J., Yang Z. 2021. A review of tidal energy – Resource, feedbacks, and environmental interactions. In Journal of Renewable and Sustainable Energy.
- 29. Pacheco A., Ferreira Ó., Carballo R., Iglesias G. 2014. Evaluation of the production of tidal stream energy in an inlet channel by coupling field data and numerical modelling. Energy, 71, 104–117.
- 30. Pu X., Shi J.Z., Hu G.D. 2017. The effect of stratification on the vertical structure of the tidal ellipse in the Changjiang River estuary, China. Journal of Hydro-Environment Research, 15, 75–94.
- 31. Rourke F. O., Boyle F., Reynolds A. 2010. Marine current energy devices: Current status and possible future applications in Ireland. Renewable and Sustainable Energy Reviews, 14(3), 1026–1036.
- 32. Rourke F. O., Boyle F., Reynolds A. 2009. Renewable energy resources and technologies applicable to Ireland. Renewable and Sustainable Energy Reviews, 13(8), 1975–1984.
- 33. Siagian H., Ismanto A., Putra T. W. L., Pranata 2021. Stratification on the Vertical Structure of the Tidal Ellipse and Power Density Estimation in the Larantuka Strait, East Flores Based on ADCP Measurement Data. In: IOP Conference Series: Earth and Environmental Science, Indonesia.
- 34. Siagian H., Sugianto D.N., Kunarso 2019a. Current Velocity Impacts from Interaction of Semidiurnal and Diurnal Tidal Constituents for Tidal Stream Energy in East Flores. In: IOP Conference Series: Earth and Environmental Science, Indonesia.
- 35. Siagian H., Sugianto D. N., Kunarso, Pranata A.S. 2019b. Estimation of Potential Energy Generated from Tidal Stream in Different Depth Layer at East Flores Waters Measured by ADCP. IOP Conference Series: Earth and Environmental Science, Indonesia.
- 36. Vanegas Cantarero M.M. 2020. Of renewable energy, energy democracy, and sustainable development: A roadmap to accelerate the energy transition in developing countries. Energy Research and Social Science, 70, 101716.
- 37. Wang Z., Carriveau R., Ting D. S. K., Xiong W., Wang Z. 2019. A review of marine renewable energy storage. International Journal of Energy Research, 43(12), 6108–6150.
- 38. Wei Z., Fang G., Susanto R.D., Adi T.R., Fan B., Setiawan A., Li S., Wang Y., Gao X. 2016. Tidal elevation, current, and energy flux in the area between the South China Sea and Java Sea. Ocean Science, 12(2), 517–531.
- 39. Zabihian F., Fung A.S. 2011. Review of marine renewable energies: Case study of Iran. Renewable and Sustainable Energy Reviews 15(5), 2461–2474.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5b4f6de-e18b-41bd-8020-644621495172
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.