Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Zużycie ścierne stali narzędziowej X153CrMoV12 o zróżnicowanej zawartości niobu
Języki publikacji
Abstrakty
The article analyses the influence of the addition of niobium on the microstructure, hardness, and wear of X153CrMoV12 cold work tool steel. Steels containing 0.06 wt.% and 0.20 wt.% niobium are characterized using light and scanning electron microscopy methods, hardness measurements and tribological tests. To test the abrasion resistance of selected materials, the authors use the T-07 test stand. The behavior of steel under tribological influences is assessed using scanning electron microscopy. The results show that the abrasive particles have an obvious effect on the loss of steel abrasive mass, but the niobium content determines the relative wear resistance. Steel with a niobium content of 0.20 wt.% is characterized by higher hardness, which ultimately results in higher abrasion resistance. This effect is associated with the presence of niobium carbide precipitates in the steel.
Oceniono wpływ dodatku niobu na mikrostrukturę, twardość i zużycie stali narzędziowej do pracy na zimno gatunku X153CrMoV12. Scharakteryzowano stale zawierające odpowiednio 0,06% wag. oraz 0,20% wag. niobu z wykorzystaniem metod mikroskopii świetlnej, elektronowej skaningowej, pomiarów twardości oraz badań tribologicznych. Badanie odporności na ścieranie wybranych materiałów prowadzono na stanowisku badawczym T-07. Zachowanie stali w warunkach oddziaływań tribologicznych oceniono z wykorzystaniem elektronowej mikroskopii skaningowej. Wyniki pokazały, że cząstki ścierne miały oczywisty wpływ na utratę masy ściernej stali, ale zawartość niobu decydowała o względnej odporności na zużycie. Stal o zawartości niobu 0,20% wag. charakteryzowała się wyższą twardością, co przełożyło się ostatecznie na wyższą odporność na ścieranie. Efekt ten powiązano z obecnością w stali wydzieleń węglików niobu.
Czasopismo
Rocznik
Tom
Strony
17--28
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr., wz.
Twórcy
autor
- Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- 0000-0003-4127-3315
Bibliografia
- 1. Lachowicz M., Leśniewski T., Lachowicz M.: Effect of dual-stage ageing and RRA treatment on the three-body abrasive wear of the AW7075 alloy, Strojniški vestnik – Journal of Mechanical Engineering, 68 (7–8), 2022, pp. 493–505. doi:http://dx.doi.org/10.5545/sv-jme.2022.142.
- 2. Augustyn-Nadzieja J., Frocisz Ł., Matusiewicz P.: Korelacja pomiędzy mikrostrukturą, właściwościami mechanicznymi i tribologicznymi stopów protetycznych z układu Co-Cr z mikrododatkami Mo I W, Tribologia, vol. 305, no. 3, 2023, pp. 7–17, https://doi.org/10.5604/01.3001.0053.9425.
- 3. Frocisz, Ł., Krawczyk, J., Madej, M., Kopyściański, M.: Correlation of Tribological Properties of Titanium Alloys with their Microstructures, In Key Engineering Materials, Vol. 687, 2016, pp. 41–46, Trans Tech Publications, Ltd, https://doi.org/10.4028/www.scientific.net/kem.687.41.
- 4. Wang Y., Lei T., Liu J.: Tribo-metallographic behavior of high carbon steels in dry sliding: I. Wear mechanisms and their transition, Wear, Vol. 231, Iss. 1, 1999, pp. 1–11, https://doi.org/10.1016/S0043-1648(99)00115-5.
- 5. Xu L., Wei S., Xiao F., Zhou H., Zhang G., Li J.: Effects of carbides on abrasive wear properties and failure behaviours of high speed steels with different alloy element content, Wear, Volumes 376–377, Part B, 2017, pp. 968–974, https://doi.org/10.1016/j.wear.2017.01.021.
- 6. Pavlı́čková M., Vojtěch D., Novák P., Gemperlová J., Gemperle A., Zárubová N., Lejček, P., Jurči P., Stolař P.: Thermal treatment of PM-tool steel alloyed with niobium, Materials Science and Engineering: A, Volume 356, Issues 1–2, 2003, pp. 200–207, https://doi.org/10.1016/S0921-5093(03)00120-5.
- 7. Białobrzeska B., Dziurka R.: Effect of Boron accompanied by chromium, vanadium and titanium on the transformation temperatures of low-alloy cast steels, Arch. Metall. Mater., 68, 2023, pp. 257–267, https://doi.org/10.24425/amm.2023.141502.
- 8. Białobrzeska B.: Effect of boron accompanied by chromium, vanadium and titanium on kinetics of austenite grain growth, Ironmaking & Steelmaking, 48 (6), 2021, pp. 649–676. doi:10.1080/03019233.2021.1889894.
- 9. Sun Ly., Liu X., Xu X., Lei Sw., Li Hg., Zhai Qj.: Review on niobium application in microalloyed steel, J. Iron Steel Res. Int., 29, 2022, pp. 1513–1525, https://doi.org/10.1007/s42243-022-00789-1.
- 10. Khaple S., Prakash U., Golla B. R., Prasad V. V. S.: Effect of Niobium Addition on Microstructure and Mechanical Properties of Fe–7Al–0.35C Low-Density Steel, Metallogr. Microstruct. Anal. 9, 2020, pp. 127–139, https://doi.org/10.1007/s13632-020-00622-9.
- 11. Matrosov Y. I.: Comparison of the Effect of Microadditions of Niobium, Titanium and Vanadium on Formation of Microstructure of Low-Carbon Low-Alloy Steels, Met Sci Heat Treat, 65, 2023, pp. 152–158, https://doi.org/10.1007/s11041-023-00907-0.
- 12. Hippenstiel F.: Effect of niobium additions on the properties and life cycle of steels for hot working tools, Proceedings of the International Symposium on Wear Resistant Alloys for the Mining and Processing Industry. Held in Campinas, São Paulo, Brazil, 4–7 May 2015, CBMM 2018, pp. 277–288.
- 13. He G., Zhu X., Jiang B., Wang Z., Liu Y., Wu C., Wei W.: Grain growth behavior of niobium microalloyed 20MnCr5 steel and the effect of boron, Materialwissenschaft und Werkstofftechnik, 53 (5), 2022, pp. 547–563, https://doi.org/10.1002/mawe.202100065.
- 14. Javaheri V., Nyyssönen T., Grande B., Porter D.: Computational Design of a Novel Medium-Carbon, Low-Alloy Steel Microalloyed with Niobium, J. of Materi Eng and Perform, 27, 2018, pp. 2978–2992, https://doi.org/10.1007/s11665-018-3376-9.
- 15. Li Hn., Han Sc., Zhang Bh., Qiao Gy., Liu Jb., Xiao Fr.: Effects of Niobium on Microstructure, Hardness and Wear Behavior for High-Speed Steel Rolls, Metall Mater Trans A, 54, 2023, pp. 3271–3285, https://doi.org/10.1007/s11661-023-07098-6.
- 16. Borkovcová K., Novák P., Merghem N., Tsepeleva A., Salvetr P., Brázda M., Rajnovic D.: Processing of Niobium-Alloyed High-Carbon Tool Steel via Additive Manufacturing and Modern Powder Metallurgy, Materials, 16 (13), 2023, https://doi.org/10.3390/ma16134760.
- 17. Muchiri P. W., Mwalukuku V. M., Korir K. K., Amolo G. O., Makau N. W.: Hardness characterization parameters of Niobium Carbide and Niobium Nitride: A first principles study, Materials Chemistry and Physics, Vol. 229, 2019, pp. 489–494, https://doi.org/10.1016/j.matchemphys.2019.03.001.
- 18. Mohrbacher H., Jarreta D.: Technology, properties and application of niobium carbide reinforced steel and iron alloys, Conference: Fundamentals and Applications of Mo and Nb Alloying in High Performance Steels - Vol. 2, Jeju, South Korea, 2015, pp. 227–256.
- 19. Deardo A. J.: Niobium in modern steels, International Materials Reviews, 48 (6), 2003, pp. 371–402. doi:10.1179/095066003225008833.
- 20. Islam M. A., Bepari M. M. A., Shorowordi K. M.: Dry sliding wear in case-hardened niobium microalloyed steels, Journal of Materials Processing Technology, Vol. 160, Iss. 3, 2005, pp. 401–409, https://doi.org/10.1016/j.jmatprotec.2004.04.424.
- 21. Tęcza G.: Changes in Abrasive Wear Resistance during Miller Test of High-Manganese Cast Steel with Niobium Carbides Formed in the Alloy Matrix, Applied Sciences, 11 (11), 2021, https://doi.org/10.3390/app11114794.
- 22. Pourasiabi H., Gates J. D.: Effects of niobium macro-additions to high chromium white cast iron on microstructure, hardness and abrasive wear behaviour, Materials & Design, Vol. 212, 2021, https://doi.org/10.1016/j.matdes.2021.110261.
- 23. Elias C. N., Da Costa Viana C. S.: Effect of ausforming on microstructure and hardness of AISI H-13 tool steel modified with niobium, Materials Science and Technology, 8(9), 1992, pp. 785–790. doi:10.1179/mst.1992.8.9.785.
- 24. Brown C. S., Heerema J., Enloe M., Findley K.O., Speer J. G., De Moor E.: Niobium-Carbide-Enhanced Wear Performance of High-Carbon Steels, Steel Research International, vol.95, no 3, 2024, https://doi.org/10.1002/srin.202300664.
- 25. Pavlíčková M., Vojtech D., Novák P., Gemperlová J., Gemperle A., Zárubová N., Jurči P., Lejček P.: Influence of Thermal Treatment on Microstructure and Hardness of Niobium Alloyed PM-Tool Steel, Instrumentation Science & Technology, 32 (2), 2004, pp. 207–219, https://doi.org/10.1081/CI-120028773.
- 26. Theisen W., Siebert S., Huth S.: Wear Resistant Steels and Casting Alloys containing Niobium Carbide, Steel Research International, vol. 78, no 12, 2007, pp. 921–928, https://doi.org/10.1002/srin.200706307.
- 27. Alipovna M., Karaulovich K., Vladimirovich P., Zhanuzakovich A., Bolatovna K., Wieleba W., Leśniewski T., Bakhytuly N.: The study of the tribological properties under high contact pressure conditions of TiN, TiC and TiCN coatings deposited by the magnetron sputtering method on the AISI 304 stainless steel substrate, Materials Science-Poland, 2023; 41 (1), pp. 1–14, https://doi.org/10.2478/msp-2022-0055.
- 28. Bansal G. K., Srivastava V. C., Ghosh Chowdhury S.: Role of solute Nb in altering phase transformations during continuous cooling of a low-carbon steel, Materials Science and Engineering: A, vol. 767, 2019, https://doi.org/10.1016/j.msea.2019.138416.
- 29. Mei P. R.: Effects of Niobium Microaddition on Carbon Steels, In Defect and Diffusion Forum, vol. 420, 2022, pp. 101–117, Trans Tech Publications, Ltd, https://doi.org/10.4028/p-5kc1x5.
- 30. Dobrzański L. A., Zarychta A.: The structure and properties of W–Mo–V high-speed steels with increased contents of Si and Nb after heat treatment, Journal of Materials Processing Technology, vol. 77, Iss. 1–3, 1998, pp. 180–193, https://doi.org/10.1016/S0924-0136(97)00416-0.
- 31. Presoly P., Gerstl B., Bernhard C., Marsoner S., Friessnegger B., Hahn S.: Primary Carbide Formation in Tool Steels: Potential of Selected Laboratory Methods and Potential of Partial Premelting for the Generation of Thermodynamic Data, Steel Research International, 2023, vol. 94, no 43, https://doi.org/10.1002/srin.202200503.
- 32. Penagos J. J., Pereira J. I., Machado P. C., Albertin E., Sinatora A.: Synergetic effect of niobium and molybdenum on abrasion resistance of high chromium cast irons, Wear, 2017, vol. 376–377, Part B, pp. 983–992, https://doi.org/10.1016/j.wear.2017.01.103.
- 33. Brown C. S., Heerema J., Enloe M., Findley K. O., Speer J. G., De Moor E.: Niobium-Carbide-Enhanced Wear Performance of High-Carbon Steels, Steel Research International, 2024, vol. 95, no 3, https://doi.org/10.1002/srin.202300664.
- 34. Białobrzeska B.: The influence of boron on the resistance to abrasion of quenched low-alloy steels, Wear, 2022, vol. 500–501, https://doi.org/10.1016/j.wear.2022.204345.
- 35. Sundström A., Rendón J., Olsson M.: Wear behaviour of some low alloyed steels under combined impact/abrasion contact conditions, Wear, 2001, Vol. 250, Iss. 1–12, pp. 744–754, https://doi.org/10.1016/S0043-1648(01)00712-8.
- 36. Pawlak K., Białobrzeska B., Konat Ł.: The influence of austenitizing temperature on prior austenite grain size and resistance to abrasion wear of selected low-alloy boron steel, Archives of Civil and Mechanical Engineering, 2016, vol. 16, Iss. 4, pp. 913–926, https://doi.org/10.1016/j.acme.2016.07.003.
- 37. Sun D., Wharton J. A., Wood R. J. K.: Micro-abrasion mechanisms of cast CoCrMo in simulated body fluids, Wear, 2009, vol. 267, Iss. 11, pp. 1845–1855, https://doi.org/10.1016/j.wear.2009.03.005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5b4ec9f-5b5d-4bca-a96d-57629f1c0c7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.