PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A hybrid algorithm combining auto-encoder network with Sparse Bayesian Regression optimized by Artificial Bee Colony for short-term Wind Power Forecasting

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Krótkoterminowe przewidywanie energii wiatru przez algorytm hybrydowy – sieć auto-enkoderowa oraz regresja Bayesa SBR zoptymalizowana metodą sztucznej kolonii pszczół
Języki publikacji
EN
Abstrakty
EN
To forecast the short-term wind power precisely, this paper proposes a hybrid strategy which consists of a nonlinear dimensionality reduction component by auto-encoder network and a forecasting component based on Sparse Bayesian Regression optimized by Artificial Bee Colony Optimization. The proposed model can predict wind power curve per hour with a lead time of 3hours. Finally, an experiment is conducted to test the effectiveness of the forecasting model based on the detailed data from a wind farm in China.
PL
W artykule zaproponowano hybrydową metodę przewidywania krzywej prędkości wiatru w okresie kolejnej godziny. Algorytm bazuje na nieliniowej redukcji wymiarowości przez sieć auto-enkoderową (sztuczną sieć neuronową) oraz na elemencie przewidującym, opartym na rzadkiej regresji Bayesa (ang. Sparse bayesian Regression) zoptymalizowanej metodą sztucznej koloni pszczół.
Rocznik
Strony
223--228
Opis fizyczny
Bibliogr. 26 poz., schem., tab., wykr.
Twórcy
autor
  • North China Electric Power University, Beijing,102206,China
autor
  • North China Electric Power University,Beijing,102206,China
Bibliografia
  • [1] Costa,A.; Crespo, A. A review on the young history of the wind power short-term prediction [J]. Renewable and Sustainable Energy Reviews 2008, 12(6),1725–1744.
  • [2] Xie,L.; Liu,J.H; NipunLopli. Wind Integration in Power Systems: Operational Challenges and Possible Solutions. Proceedings of the IEEE, 2011, 214-232.
  • [3] Foley, A.M.; Leahy, P.G.; Marvuglia A.; McKeogh, E.J. Current methods and advances in forecasting of wind power generation [J].Renewable Energy 2012,37, 1-8.
  • [4] Wu, Y.K; Hong J.S. A literature review of wind forecasting technology in the world[C]. IEEE Conference on Power Technology ,Lausanne ,2007,7,504-509.
  • [5] Ma, L.; Luan S.Y.; Jiang C.W. A review on the forecasting of wind speed and generated power [J]. Renewable and Sustainable Energy Reviews 2009, 13(4), 915–920.
  • [6] Bashir, Z. A.; El-Hawary M. E. Applying Wavelets to Short-Term Load Forecasting Using PSO-Based Neural Networks. IEEE Transaction on Power System 2009, 1 (24), 20-27.
  • [7] Catalão, J.P.S.; Pousinho, H.M.I.; Mendes,V.M.F. Short-term wind power forecasting in Portugal by neural networks and wavelet transform. Renewable Energy 2011, 36, 1245-1251.
  • [8] Sancho S.S.; Emilio G. O.G. Short term wind speed prediction based on evolutionary support vector regression algorithms. Expert System with Application 2011, 38,4052-4057.
  • [9] Ajay, S.P.; Devender, S.; Sunil K.S. Intelligent Hybrid Wavelet Models for Short-Term Load Forecasting. IEEE Transaction on Power System 2010, 25(3), 1266-1273.
  • [10] Amjady, N.; Keynia, F.; Zareipour, F. Wind Power Prediction by a New Forecast Engine Composed of Modified Hybrid Neural Network and Enhanced Particle Swarm Optimization. IEEE Transaction on Sustainable Energy 2011, 2(3), 265-276.
  • [11] Catalão, J.P.S.; Pousinho,H.M.I.; Mendes,V.M.F. Hybrid Wavelet-PSO-ANFIS Approach for Short-Term Wind Power Forecasting in Portugal. IEEE Transaction on Sustainable Energy 2011,2(1), 50-59.
  • [12] Hong,Y.Y; Chang,H.L.; Chiu,C.S. Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs.Energy 2010,35,3870-3876.
  • [13] Zeng, J.W.; Qiao,W. Support Vector Machine-Based Short-Term Wind Power Forecasting. Power System Conference and Exposition (PSCE),2011,1-8.
  • [14] Holland, J.H.. Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI, 1975.
  • [15] Price, K.V.; Storn, R.M.; Lampinen, J.A. (Eds.). Differential Evolution: A Practical Approach to Global Optimization. Springer Natural Computing Series, 2005.
  • [16] Liao, R.G.; Zheng, H.B.; Stanislaw Grzybowski,Yang, L.G. Particle swarm optimization-least squares support vector regression based forecasting model on dissolved gases in oilfilled power transformers. Electric Power System Research 2011, 12(81), 2074-2080.
  • [17] Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization 2007, 39,459-471.
  • [18] Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 2011,8(1),687-697.
  • [19] Karaboga, D.; Akay, B. A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation 2009, 214, 108-132.
  • [20] Yang, D.P.; Xu L.; Gong, S.P.; Li, H.S.; Gregory D. Peterson. Joint Electrical Load Modeling and Forecasting Based on Sparse Bayesian Learning for the Smart Grid. Conference on Information Sciences and Systems (CISS), 2011, 1-6.
  • [21] Dimitris, G.; Tzika; Aristidis,C.; Likas. Sparse Bayesian Modeling With Adaptive Kernel Learning. IEEE TRANSACTION ON NEURAL NETWORKS 2009, 20(6), 926-937.
  • [22] Qing, D.; Zhao, J.G.; Niu, L.; KeLuo. Regression Based on Sparse Bayesian Learning and the Applications in Electric Systems. Fourth International Conference on Natural Computation,2008, 106-110.
  • [23] Hinton, G. E.; Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507.
  • [24] Hopfield, J. J.; Proc. Natl. Acad. Sci. U.S.A. 79, 2554 ,1982.
  • [25] M. E. Tipping. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res., 2001,1(1), 211–244.
  • [26] Karaboga, D. An idea based on honey bee swarm for numerical optimization, Technical Report TR06, Computer Engineering Department, Erciyes University, Kayseri, Turkey, (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5b250db-e966-4611-b4f4-0eb6ca0ad8ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.