PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identifying the optimal controller strategy for DC motors

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study is to design a control strategy for the angular rate (speed) of a DC motor by varying the terminal voltage. This paper describes various designs for the control of direct current (DC) motors. We derive a transfer function for the system and connect it to a controller as feedback, taking the applied voltage as the system input and the angular velocity as the output. Different strategies combining proportional, integral, and derivative controllers along with phase lag compensators and lead integral compensators are investigated alongside the linear quadratic regulator. For each controller transfer function, the step response, root locus, and Bode plot are analysed to ascertain the behaviour of the system, and the results are compared to identify the optimal strategy. It is found that the linear quadratic controller provides the best overall performance in terms of steady-state error, response time, and system stability. The purpose of the study that took place was to design the most appropriate controller for the steadiness of DC motors. Throughout this study, analytical means like tuning methods, loop control, and stability criteria were adopted. The reason for this was to suffice the preconditions and obligations. Furthermore, for the sake of verifying the legitimacy of the controller results, modelling by MATLAB and Simulink was practiced on every controller.
Słowa kluczowe
EN
Rocznik
Strony
101--114
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wz.
Twórcy
autor
  • Deanship of Graduate Studies and Scintific Research, University of Bahrain P.O. Box 32038, Kingdom of Bahrain
Bibliografia
  • [1] Ahmed A. H. O., Optimal Speed Control for Direct Current Motor Using Linear Quadratic Regulator, Journal of Science and Technology – Engineering and Computer Sciences, vol. 14, no. 2 (2013).
  • [2] Alasooly H., Control of DC Motor using Different Controller Strategies, Global Journal of Technology and Optimization, vol. 2, pp. 21–28 (2011).
  • [3] Al-Mulla Hummadi R. M. K., Simulation of Optimal Speed Control for a DC Motor Using Linear Quadratic Regulator (LQR), Journal of Engineering, vol. 18, pp. 340–348 (2012).
  • [4] Ang H. K., Chong G., Li Y., PID Control System Analysis, Design, and Technology, IEEE Transactions on Control System Technology, vol. 13, pp. 559–576 (2005).
  • [5] Chengaiah Ch., Venkateswarlu K., Comparative Study On Dc Motor Speed Control Using Various Controllers, International Journal of Advanced Research in Electrical, Electronics, and Instrumentation Engineering, vol. 3, iss. 1 (2014).
  • [6] Dwivedi R., Dohare D., PID Conventional Controller and LQR Optimal Controller for Speed Analysis of DC Motor: A Comparative Study, International Research Journal of Engineering and Technology, vol. 2, iss. 8 (2015).
  • [7] Ma Y., Liu Y., Wang E. C., Design of Parameters Self-tuning Fuzzy PID Control for DC Motor, in Proceedings of Second International Conference on Industrial Mechatronics and Automation (ICIMA), vol. 2, pp. 345–348 (2010).
  • [8] Marro G., Prattichizzo D., Zattoni E., Geometric Insight into Discrete-time Cheap and Singular Linear Quadratic Riccati (LQR) Problems, IEEE Transactions on Automatic Control, vol. 47, no. 1, pp. 102–107 (2002).
  • [9] Meshram P. M., Kanojiya R. G., Tuning of PID Controller using Ziegler-Nichols Method for Speed Control of DC Motor, IEEE International Conference On Advances In Engineering, Science and Management (ICAESM-2012), pp. 117–122 (2012).
  • [10] Monk S., Programming Arduino Getting Started with Sketches, 1st Edition, McGraw Hill (2012).
  • [11] Praboo N. N., Bhaba P. K., Simulation work on Fractional Order PI Control Strategy for Control of DC Motor based on Stability boundary Locus Method, International Journal of Engineering Trends and Technology, vol. 4, iss. 8, pp. 3403–3409 (2013).
  • [12] Shrivastval V., Singh R., Performance Analysis of Speed Control of Direct Current (DC) Motor using Traditional Tuning Controller, International Journal of Emerging Technology and Advanced Engineering, vol. 4, iss. 5 (2014).
  • [13] Yaniv O., Nagurka M., Robust, PI Controller Design Satisfying Sensitivity and Uncertainty Specifications, IEEE Transactions on Automation Control, vol. 48, pp. 2069–2072 (2003).
  • [14] Kanieski J. M., Tambara R. V., Pinheiro H., Cardoso R., Gündling H. A., Robust Adaptive Controller Combined With a Linear Quadratic Regulator Based on Kalman Filtering, IEEE Trans. Autom. Control, vol. 6, pp. 1373–1378 (2016).
  • [15] Abut T., Modeling and Optimal Control of a DC Motor, Int. J. Eng. Trends Technol., vol. 32, no. 3, pp. 146–150 (2016).
  • [16] Suhaib Masroor, Chen Peng, Event triggered non-inverting chopper fed networked DC motor speed synchronizati, COMPEL – The international journal for computation and mathematics in electrical and electronic engineering, vol. 37, iss. 2, pp. 911–929, https://doi.org/10.1108/ COMPEL-09-2017-0397 (2018).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5b15f7a-e4bf-4bd8-84e3-33ebbbbde3cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.