PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Acoustic absorption of a new class of alumina foams with various high-porosity levels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, a new class of ceramic foams with porosity levels up to 90% has been developed as a result of the association of the gelcasting process and aeration of the ceramic suspension. This paper presents and discusses original results advertising sound absorbing capabilities of such foams. The authors man- ufactured three types of alumina foams in order to investigate three porosity levels, namely: 72, 88, and 90%. The microstructure of foams was examined and typical dimensions and average sizes of cells (pores) and cell-linking windows were found for each porosity case. Then, the acoustic absorption coefficient was measured in a wide frequency range for several samples of various thickness cut out from the foams. The results were discussed and compared with the acoustic absorption of typical polyurethane foams proving that the alumina foams with high porosity of 88-90% have excellent sound absorbing properties competitive with the quality of sound absorbing PU foams of higher porosity.
Słowa kluczowe
Rocznik
Strony
495--502
Opis fizyczny
Bibliogr. 25 poz., fot., tab., wykr.
Twórcy
  • Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106 Warszawa, Poland
autor
  • Faculty of Chemistry, Rzeszow University of Technology al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
Bibliografia
  • 1. Allard J.F., Atalla N. (2009), Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, Second Edition, Wiley.
  • 2. Bo Z., Tianning C. (2009), Calculation of sound absorption characteristics of porous sintered fiber metal, Appl. Acoust., 70, 337-346.
  • 3. Boonen R., Sas P. (2004), Calibration of the two microphone transfer function method to measure acoustical impedance in a wide frequency range, Proceedings of ISMA 2004: International Conference on Noise and Vibration Engineering, Sas P., DeMunck M. [Eds.], Leuven (Belgium), 325-336.
  • 4. Chung J.Y., Blaser D. (1980), Transfer function method of measuring induct acoustic properties, J. Acoust. Soc. Am., 68, 3, 907-921.
  • 5. Colombo P. (2006), Conventional and novel processing for cellular ceramics, Philosophical Transaction of the Royal Society A, 364, 109-124.
  • 6. Cuiyun D., Guang C., Xinbang X., Peisheng L. (2012), Sound absorption characteristics of a high temperature sintering porous ceramic material, Appl. Acoust., 73, 865-871.
  • 7. Dalmont J.-P. (2001), Acoustic impedance measurement, Part I: A review. Part II: A new calibration method, J. Sound Vib., 243, 3, 427-459.
  • 8. Ekici B., Kentli A., Kücük H. (2012), Improving sound absorption property of polyurethane foams by adding tea-leaf fibers, Archives of Acoustics, 37, 4, 515-520.
  • 9. Fuji M., Kato T., Zhang F.-Z., Takahashi M. (2006), Effects of surfactants on the microstructure and some intrinsic properties of porous building ceramics fabricated by gelcasting, Ceram. Int., 32, 797-802.
  • 10. Giese F., Eigenbrod C., Koch D. (2011), A novel production method for porous sound-absorbing ceramic material for high-temperature applications, Int. J. Appl. Ceram. Technol., 8, 3, 646-652.
  • 11. Green D.J., Colombo P. (2003), Cellular ceramics: intriguing structures, novel properties, and innovative applications, Materials Research Bulletin, 28, 296-300.
  • 12. ISO 10534-2 (1998), Determination of sound absorption coefficient and impedance in impedance tubes, International Standard Organisation.
  • 13. Potoczek M. (2008), Gelcasting of alumina foams using agarose solutions, Ceramics International, 34, 661-667.
  • 14. Ranachowski P., Rejmund F., Ranachowski Z., Pawełek A., Piatkowski A. (2009), Comparison of acoustic emission and structure degradation in compressed porcelain and corundum materias, Archives of Acoustics, 34, 4, 655-676.
  • 15. Sepulveda P. (1997), Gelcasting of foams for porous ceramics, American Ceramic Society Bulletin, 76, 61-65.
  • 16. Sepulveda P., Binner J.G.P. (1999), Processing of cellular ceramics by foaming and in situ polymerisation of organic monomers, Journal European Ceramic Society, 19, 2059-2066.
  • 17. Takahara H. (1982), Sound insulating characteristics of porous ceramic Al2O3-SiO2, Appl. Acoust., 15, 2, 111-116.
  • 18. Takahara H. (1994), The sound absorption characteristics of particulate porous ceramic materials, Appl. Acoust., 41, 3, 265-274.
  • 19. Wang Y., Zhang C., Ren L., Ichchou M., Galland M.-A., Bareille O. (2013), Influences of rice hull in polyurethane foam on its sound absorption characteristics, Polymer Composites, article in press, published online in Wiley Online Library, doi:10.1002/pc.22590.
  • 20. Zhang F.-Z., Kato T., Fuji M., Takahashi M. (2006), Gelcasting fabrication of porous ceramics using a continuous process, J. Eur. Ceram. Soc., 26, 667-671.
  • 21. Zielinski T.G. (2008), Active porous composites for wide frequency-range noise absorption, Proceedings of ISMA2008: International Conference on Sound and Vibration, Leuven (Belgium), 89-103.
  • 22. Zielinski T.G. (2010), Fundamentals of multiphysics modelling of piezo-poro-elastic structures, Archives of Mechanics, 62, 5, 343-378.
  • 23. Zielinski T.G. (2011), Numerical investigation of active porous composites with enhanced acoustic absorption, Journal of Sound and Vibration, 330, 5292-5308.
  • 24. Zielinski T.G. (2012), Inverse identification and microscopic estimation of parameters for models of sound absorption in porous ceramics, Proceedings of International Conference on Noise and Vibration Engineering (ISMA2012)/International Conference on Uncertainty in Structural Dynamics (USD2012), Sas P., Moens D., Jonckheere S. [Eds.], Leuven (Belgium), 95-107.
  • 25. Zielinski T.G., Rak M. (2010), Acoustic absorption of foams coated with MR fluid under the influence of magnetic field, J. Intell. Mater. Syst. Struct., 21, 125-131.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5af2733-aab5-4b6f-9388-f30269b7dfc7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.