PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Existence of three solutions for two quasilinear Laplacian systems on graphs

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We deal with the existence of three distinct solutions for a poly-Laplacian system with a parameter on finite graphs and a (p,q) -Laplacian system with a parameter on locally finite graphs. The main tool is an abstract critical point theorem in [G. Bonanno and S. A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal. 89 (2010), no. 1, 1–10]. A key point in this study is that we overcome the difficulty to prove that the Gâteaux derivative of the variational functional for poly-Laplacian operator admits a continuous inverse, which is caused by the special definition of the poly-Laplacian operator on graph and mutual coupling of two variables in system.
Wydawca
Rocznik
Strony
art. no. 20240062
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
  • Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan, 650500, P. R. China
  • Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan, 650500, P. R. China
  • Research Center for Mathematics and Interdisciplinary Sciences, Kunming University of Science and Technology, Kunming, Yunnan, 650500, P. R. China
Bibliografia
  • [1] S. Y. Chung and C. A. Berenstein, ω-harmonic functions and inverse conductivity problems on networks, SIAM J. Appl. Math. 65 (2005), 1200–1226, DOI: https://doi.org/10.1137/S0036139903432743.
  • [2] A. Grigor’yan, Y. Lin, and Y. Yang, Yamabe type equations on graphs, J. Differential Equations 261 (2016), no. 9, 4924–4943, DOI: https://doi.org/10.1016/j.jde.2016.07.011.
  • [3] A. Grigor’yan, Y. Lin, and Y. Yang, Existence of positive solutions to some nonlinear equations on locally finite graphs, Sci. China Math. 60 (2017), 1311–1324, DOI: https://doi.org/10.1007/s11425-016-0422-y.
  • [4] M. Imbesi, G. Molica Bisci, and D. D. Repovs, Elliptic problems on weighted locally finite graphs, Topol. Methods Nonlinear Anal. 61 (2023), no. 1, 501–526.
  • [5] A. Pinamonti and G. Stefani, Existence and uniqueness theorems for some semi-linear equations on locally finite graphs, Proc. Amer. Math. Soc. 150 (2022), no. 11, 4757–4770, DOI: https://doi.org/10.1090/proc/16046.
  • [6] X. Yu, X. Zhang, J. Xie, and X. Zhang, Existence of nontrivial solutions for a class of poly-Laplacian system with mixed nonlinearity on graphs, Math. Methods Appl. Sci. 47 (2023), no. 4, 1750–1763, DOI: https://doi.org/10.1002/mma.9621.
  • [7] P. Yang and X. Zhang, Existence and multiplicity of nontrivial solutions for a p q,( )-Laplacian system on locally finite graphs, Taiwanese J. Math. 28 (2024), no. 3, 551–588, DOI: https://doi.org/10.11650/tjm/240201.
  • [8] J. Simon, Regularite de la solution d’une equation non lineaire dans n . In: Bénilan, P., Robert, J. (Eds.), Journées d’Analyse Non Linéaire. Lecture Notes in Mathematics, vol. 665. Springer, Berlin, Heidelberg.
  • [9] B. Ricceri, On a classical existence theorem for nonlinear elliptic equations, Experimental, Constructive and Nonlinear Analysis (M. Théra, ed.), CMS Conf. Proc., vol. 27, 2000, pp. 275–278.
  • [10] X. Zhang, X. Zhang, J. Xie, and X. Yu, Existence and multiplicity of nontrivial solutions for poly-Laplacian systems on finite graphs, Bound. Value Probl. 2022 (2022), no. 32, 1–13, DOI: https://doi.org/10.1186/s13661-022-01613-1.
  • [11] G. Bonanno and S. A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal. 89 (2010), no. 1, 1–10, DOI: https://doi.org/10.1080/00036810903397438.
  • [12] G. Bonanno and G. M Bisci, Three weak solutions for elliptic Dirichlet problems, J. Math. Anal. Appl. 382 (2011), no. 1, 1–8, DOI: https://doi.org/10.1016/j.jmaa.2011.04.026.
  • [13] E. Zeidler, Nonlinear Functional Analysis and Its Applications, II/B, Springer-Verlag, New York, 1990.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5ae18e4-d565-4037-87b4-9f309214f6de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.