PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Specifics of physico-mechanical characteristics of thermally-hardened rebar

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal hardening is widely used nowadays for modification of steel bar properties and obtaining effective reinforcing material. Strength and deformation characteristics of thermally hardened reinforcement is the complex indicator of reinforcement efficiency. Therefore, reliable assessment of physico-mechanical characteristics of thermally hardened rebar is topical and important issue. This article is intended to the analysis of physico-mechanical characteristics of thermally hardened rebar on the basis of experimental data. Thorough statistical processing of experimental data was made and specific features of strength parameters were identified. Analytical model of strength characteristics is proposed, which enables to take into account inhomogeneous strength properties of the rebar along its cross-section. It could be stated that assessment of physico-mechanical characteristics of thermally hardened rebar is topical and important issue, which is the prospective area of further research.
Rocznik
Strony
73--81
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
  • Lviv Polytechnic National University, Department of Building Constructions and Bridges, 12 st. S. Bandera, Lviv, 79013, Ukraine
  • Czestochowa University of Technology, Faculty of Civil Engineering, 69 st. Dąbrowskiego, 42-201 Czestochowa, Poland
  • Lviv Polytechnic National University, Department of Highways and Bridges, 12 st. S. Bandera, Lviv, 79013, Ukraine,
Bibliografia
  • 1. Ahaneku, I.E., Kamal, A.R., Ogunjirin, O. A., 2012. Effects of Heat Treatment on the Properties of Mild Steel Using Different Quenchants. Frontiers in Science, 2(6), 153-158, DOI: 10.5923/j.fs.20120206.0410.5923/j.fs.20120206.04
  • 2. Andriulaitytė, I., Valentukeviciene, M., 2020. Circular economy in buildings. Construction of optimized energy potential (CoOPE), 9(2), 23-29, DOI: 10.17512/bozpe.2020.2.03.10.17512/bozpe.2020.2.03
  • 3. Azizov, T.N., Kochkarev, D.V., Galinska, T.A., 2019. New de-sign concepts for strengthening of continuous reinforced-concrete beams. In IOP Conference Series: Materials Science and Engineering, 708(1), 012040, IOP Publishing, DOI: 10.1088/1757-899X/708/1/01204010.1088/1757-899X/708/1/012040
  • 4. Bambura, A.M., Dorogova, O.V., Sazonova, I.R., Bogdan, V.M., 2018. Calculations of the eccentric compressed slender reinforced concrete members applying an “effective” curvature method, Nauka i budivnictvo, (3), 10-20, [In Ukranian].
  • 5. Blikharskyy, Y.Z., Maksymenko, O.P., 2020a. Evaluation of strength and deformability of heat-strengthened reinforcement. Physico-chemical mechanics of materials, 56(6), 60-64, [In Ukranian].10.1007/s11003-021-00496-4
  • 6. Blikharskyy, Y., Kopiika, N., Selejdak, J., 2020b. Non-uniform corrosion of steel rebar and its influence on reinforced concrete elementsreliability. Production Engineering Archives, 26(2), 62-72, DOI: 10.30657/pea.2020.26.14.10.30657/pea.2020.26.14
  • 7. Blikharskyy, Y., Selejdak, J., 2021. Influence of the percentage of reinforcement damage on the bearing-capacity of RC beams (CoOPE). 10(1), 145-150, DOI: 10.17512/bozpe.2021.1.1510.17512/bozpe.2021.1.15
  • 8. Blikharskyy, Y., Selejdak, J., Kopiika, N., 2021a. Corrosion Fatigue Damages of Rebars under Loading in Time. Materials, 14(12), 3416, DOI: 10.3390/ma1412341610.3390/ma14123416
  • 9. Blikharskyy, Y., Selejdak, J., Kopiika, N. 2021b. Specifics of corrosion processes in thermally strengthened rebar. Case Studies in Construction Materials, 15, e00646, DOI: 10.1016/j.cscm.2021.e0064610.1016/j.cscm.2021.e00646
  • 10. Blikharskyy, Y., Vashkevych, R., Kopiika, N., Bobalo, T., Blikharskyy, Z., 2021c. Calculation residual strength of rein-forced concrete beams with damages, which occurred during loading. In IOP Conference Series: Materials Science and Engineering, IOP Publishing, 1021(1), 012012, DOI: 10.1088/1757-899X/1021/1/01201210.1088/1757-899X/1021/1/012012
  • 11. Bobalo, T., Blikharskyy, Y., Kopiika, N., Volynets, M., 2020. Influence of the Percentage of Reinforcement on the Compres-sive Forces Loss in Pre-stressed RC Beams Strengthened with a Package of Steel Bars. In International Scientific Conference EcoComfort and Current Issues of Civil Engineering, Springer, Cham, 55-62, DOI: 10.1007/978-3-030-57340-9_710.1007/978-3-030-57340-9_7
  • 12. Bobalo, T., Blikharskyy, Y., Kopiika, N., Volynets, M., 2019a. Serviceability of RC beams reinforced with high strength rebar’s and steel plate. In International Conference Current Issues of Civil and Environmental Engineering Lviv-Košice–Rzeszów (September, 2019), Springer, Cham, 25-33, DOI: 10.1007/978-3-030-27011-7_410.1007/978-3-030-27011-7_4
  • 13. Bobalo, T., Blikharskyy, Y., Kopiika, N., Volynets, M., 2019b. Theoretical analysis of RC beams reinforced with high strength rebar’s and steel plate. In IOP Conference Series: Materials Sci-ence and Engineering, IOP Publishing, 708(1), 012045, DOI: 10.1088/1757-899X/708/1/01204510.1088/1757-899X/708/1/012045
  • 14. Czajkowska, A., Raczkiewicz, W., Bacharz, M., Bacharz, K., 2020. Influence of maturing conditions of steel-fibre reinforced concrete on its selected parameters. Construction of optimized energy potential (CoOPE), 9(1), 47-54, DOI: 10.17512/bozpe.2020.1.0510.17512/bozpe.2020.1.05
  • 15. Choe, G., Shinohara, Y., Kim, G., Nam, J., 2020. Numerical Investigation on Lateral Confinement Effects on Concrete Cracking Induced by Rebar Corrosion. Materials, 13, 1156, DOI: 10.3390/ma1305115610.3390/ma13051156
  • 16. DSTU ISO 6892-1: 2019 Metallic materials. Tensile tests. Test method at room temperature (ISO 6892-1:2016, IDT) [Valid from 2020-01-07]. Kyiv, 2019. 39 p. [In Ukranian]. Fomin, O., Vatulia, G., Horbunov, M., Lovska, A., Píštěk, V., Kučera, P., 2021. Determination of residual resource of flat wagons load-bearing structures with a 25-year service life. In IOP Conference Series: Materials Science and Engineering, IOP Publishing, 1021(1), 012005, DOI: 10.1088/1757-899X/1021/1/012005.10.1088/1757-899X/1021/1/012005
  • 17. Gotal Dmitrović, L., Kos, Ž., Klimenko, Y., 2019. The development of prediction model for failure force of damaged rein-forced-concrete slender columns. Tehnicki Vjesnik, 26(6), 1635-1641, DOI: 10.17559/TV-2018121909361210.17559/TV-20181219093612
  • 18. Hamid, Q.Y., 2020. Heat treatment. Project: Engineering mechanics, 4, URL: https://www.researchgate.net/publication/338410268_Heat_treatment
  • 19. Karpiuk, V., Somina, Y. and Maistrenko, O., 2020. Engineering Method of Calculation of Beam Structures Inclined Sections Based on the Fatigue Fracture Model. LNCE, (47), 135-144, DOI: 10.1007/978-3-030-27011-7_1710.1007/978-3-030-27011-7_17
  • 20. Klymenko, Y., Grynyova, I., Kos, Z., 2019. The method of calculating the bearing capacity of compressed stone pillars, In International Conference Current Issues of Civil and Environ-mental Engineering Lviv-Košice– Rzeszów, Springer, Cham, 161-167, DOI: 10.1007/978-3-030-27011-7_2010.1007/978-3-030-27011-7_20
  • 21. Klymenko, Y., Kos, Z., Grynyova, I., Maksiuta, O., 2020. Operation of Damaged H-Shaped Columns. In International Scientific Conference Eco-Comfort and Current Issues of Civil Engineering, Springer, Cham, 192-201.10.1007/978-3-030-57340-9_24
  • 22. Kramarchuk, A., Ilnytskyy, B., Bobalo, T., Lytvyniak, O., 2021. A study of bearing capacity of reinforced masonry beams with GFRP reinforcement. In IOP Conference Series: Materials Science and Engineering, IOP Publishing, 1021(1), 012018, DOI: 10.1088/1757-899X/1021/1/01201810.1088/1757-899X/1021/1/012018
  • 23. Lima, J., Barros, J. 2011. Reliability analysis of shear strengthening externally bonded FRP models. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 164, 43-56, DOI: 10.1680/stbu.9.0004210.1680/stbu.9.00042
  • 24. Lipiński, T., 2017. Roughness of 1.0721 steel after corrosion tests in 20% NaCl. Production Engineering Archives, 15(15), 27-30, DOI: 10.30657/pea.2017.15.0710.30657/pea.2017.15.07
  • 25. Lychev, A.S., Vinogradov, O.G., Rodionov, V.G., 1990. Reliability of building structures. Kuibyshev, USSR, URL: https://www.elibrary.ru/item.asp?id=30368602, [In Russian].
  • 26. Maisuradze, M.V, Kuklina, A.A., Lebedev, D.I., 2020. Isothermal Heat Treatment of the Low-Carbon Martensitic Steel. Materials Engineering and Technologies for Production and Processing VI, Selected peer-reviewed full text papers from the 6th International Conference on Industrial Engineering, ICIE 2020, Solid State Phenomena, 6th International Conference on Industrial Engineering, ICIE 2020, Sochi, Russian Federation, 316, SSP, Trans Tech Publications Ltd., 264-268.10.4028/www.scientific.net/SSP.316.264
  • 27. Messer, B., Oprea, V., Wright, A., 2007. Duplex stainless steel welding: best practices. Stainl Steel World, 53-63, URL: https://pdf4pro.com/download/duplex-duplex-stainless-duplex-steel-welding-best-practices-596f0d.html
  • 28. Nair, S.A. O., Pillai, R.G., 2017. TM-Ring Test-A quality control test for TMT (or QST) steel reinforcing bars used in reinforced concrete systems. Indian Concrete Institute Journal, 18(1), 27-35, URL: https://www.researchgate.net/profile/Radhakrishna-Pil-lai/publication/340502610_TM_Ring_test_for_steel_reinforcement_-_ICI_Journal/links/5e8d8a9392851c2f52887df2/TM-Ring-test-for-steel-reinforcement-ICI-Journal.pdf.
  • 29. Okeil, A., El-Tawil, S., Shahawy, M., 2002. Flexural reliability of reinforced concrete bridge girders strengthened with carbon fiber-reinforced polymer laminates. Journal of Bridge Engineering, 7(5), 290-299, DOI: 10.1061/(ASCE)1084-0702(2002)7:5(290)10.1061/(ASCE)1084-0702(2002)7:5(290)
  • 30. Ouzaa, K., Chahmi, O., 2019. Numerical model for prediction of corrosion of steel reinforcements in reinforced concrete structures, Underground Space, 4(1), 72-77, DOI: 10.1016/j.undsp.2018.06.00210.1016/j.undsp.2018.06.002
  • 31. Özdemir, Z., 2021. Shallow Cryogenic Treatment (SCT) Effects on the Mechanical Properties of High Cr Cast Iron: Low-Carbon Cast Steel Bimetallic Casting. International Journal of Metalcasting, (IF1.805), 15, 952-961, DOI: 10.1007/s40962-020-00532-010.1007/s40962-020-00532-0
  • 32. Pham, H., Al-Mahaidi, R., 2008. Reliablity analysis of bridge beams retrofitted with fibre reinforced polymers. Composite Structures, 82(2), 177-184, DOI: 10.1016/j.compstruct.2006.12.01010.1016/j.compstruct.2006.12.010
  • 33. Pietraszek, J., Radek, N., Goroshko, A.V., 2020. Challenges for the DOE methodology related to the introduction of Industry 4.0. Production Engineering Archives, 26(4), 190-194, DOI: 10.30657/pea.2020.26.3310.30657/pea.2020.26.33
  • 34. Santos, J., Henriques, A.A., 2015. Strength and ductility of dam-aged temp-core rebars. Procedia Engineering, 114, 800-807, DOI: 10.1016/j.proeng.2015.08.02910.1016/j.proeng.2015.08.029
  • 35. Shi, J., Ming, J., Sun, W., Zhang, Y., 2017. Corrosion performance of reinforcing steel in concrete under simultaneous flexural load and chlorides attack. Construction and Building Materials, 149, 315-326, DOI: 10.1016/j.conbuildmat.2017.05.09210.1016/j.conbuildmat.2017.05.092S
  • 36. Siyuan, Z., Kaixuan, C., Wuqikun, Y. Xiaohua, C., Zidong, W., 2019. Effect of Heat Treatment on Microstructure and Mechanical properties of high strength low alloy (HSLA) steel. Research and Application of Materials Science, 1(2), 31-38, DOI: 10.33142/msra.v1i2.166610.33142/msra.v1i2.1666
  • 37. Szataniak, P., Novy, F., Ulewicz, R., 2014. HSLA steels - Comparison of cutting techniques. METAL 2014 - 23rd International Conference on Metallurgy and Materials, Conference Proceedings, 778-783.
  • 38. Torbati-Sarrraf, H., Poursaee, A., 2019. Corrosion Improvement of Carbon Steel in Concrete Environment through Modification of Steel Microstructure. J. Mater. Civ. Eng, 31(5), 25-33. DOI: 10.1061/(ASCE)MT.1943-5533.000267710.1061/(ASCE)MT.1943-5533.0002677
  • 39. Tóth, L., Haraszti, F., Kovács, T., 2018. Heat treatment effect for stainless steel corrosion resistance. European Journal of Material Science and Engineering, 3(2), 38-42, URL: https://ejmse.ro/articles/EJMSE_03_02_04_Toth.pdf
  • 40. Trentin, C., Casas, J., 2015. Safety factors for CFRP strengthening in bending of reinforced concrete bridges. Composite Structures, 128, 188-198, DOI: 10.1016/j.compstruct.2015.03.04810.1016/j.compstruct.2015.03.048
  • 41. Tu, S., Ren, X., He, J., Zhang, Z., 2020. Stress–strain curves of metallic materials and post-necking strain hardening characterization: A review. Fatigue & Fracture of Engineering Materials & Structures, 43(1), 3-19. DOI: 10.1111/ffe.1313410.1111/ffe.13134
  • 42. Wang, C., Chen, Y., Han, J., Ping, H., Zhao, X., 2018. Microstructure of ultrahigh carbon martensite. Progress in Natural Science: Materials International, 28(6), 749-753, DOI: 10.1016/j.pnsc.2018.11.00810.1016/j.pnsc.2018.11.008
  • 43. Wang, N., Ellingwood, B., Zureick, A., 2010. Reliability-based evaluation of flexural members strengthened with externally bonded fiber-reinforced polymer composites. Journal of Structural Engineering-ASCE, 136, 1151-1160, DOI: 10.1061/(asce)st.1943-541x.000019910.1061/(ASCE)ST.1943-541X.0000199
  • 44. Xiong, Z.P., Kostryzhev, A.G., Stanford, N.E., Pereloma, E.V., 2015. Micro-structures and mechanical properties of dual phase steel produced by laboratory simulated strip casting, Materials & Design, 88, 537-549, DOI: 10.1016/j.matdes.2015.09.03110.1016/j.matdes.2015.09.031
  • 45. Yang, Q., Zhou, Y., Li, Z., Mao, D., 2019. Effect of Hot Deformation Process Parameters on Microstructure and Corrosion Behavior of 35CrMoV Steel. Materials, 12, 1455, DOI: 10.3390/ma1209145510.3390/ma12091455
  • 46. Yogalakshmi, N.J., Rao, K.B., Anoop, M.B., 2020. Durability-Based Service Life Design of RC Structures – Chloride-Induced Corrosion. In Reliability, Safety and Hazard Assessment for Risk-Based Technologies, Varde, P., Prakash, R., Vinod, G., Eds.; Springer: Singapore, 579-590, DOI: 10.1007/978-981-13-9008-1_4810.1007/978-981-13-9008-1_48
  • 47. Zhang, Q., Molkov, Y.V., Sobko, Y.М., Blikharskyy, Y.Z., 2015. Determination of the mechanical characteristics and specific fracture energy of thermally hardened reinforcement. Materials Science, 50(6), 824-829. DOI: 10.1007/s11003-015-9789-910.1007/s11003-015-9789-9
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c59f9e50-9162-40fd-a584-1e81054233f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.