PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Objective: We assess the viability of using quantum entanglement (QE) information for improving event classification in a combined PET-Compton Camera (PET-CC) system, particularly in the potential for distinguishing true positron annihilation events from Random events due to prompt gamma contamination for β + and γ emitting isotopes. Methods: Monte Carlo GATE simulations were performed to evaluate the sensitivity and accuracy of event classification in various scenarios using ground truth data, including standard PET events and Compton Camera interactions. QE-sensitive data subsets were identified and filtered based on either polar scattering angles (θ) or the energy of the initial Compton scatter (EC ). The enhancement ratio - ratio of the difference of azimuthal scattering at Δφ = 90° and 0° - and fraction of post-filter Trues were used as metrics. Results: The simulations showed that QE information could assist in resolving energy ambiguities, particularly in cases where prompt gamma emissions complicate event pairing. Filtering based on EC provided a higher enhancement ratio (R ≈ 1.8) compared to θ-based filtering (R ≈ 1.4), indicating better discrimination between True and Random events. The ratio of Trues to Total events passing the EC filter (0.837) greatly improved upon that of the θ-based filter (0.541). Conclusions: Our results suggest that energy-based filtering is more effective in leveraging QE information, but further refinement of filtering algorithms is needed to fully realize its benefits. While QE has the potential to improve event classification in PET-CC systems for a few coincidence cases, further studies are needed to utilize this paradigm in image formation.
Rocznik
Strony
27--34
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Department of Nuclear, Plasma, and Radiological Engineering, Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
  • Department of Electrical and Computer Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
  • Department of Electrical and Computer Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
  • Department of Medical Imaging, Wynat College of Optical Sciences, University of Arizona, Tucson, AZ, USA
  • Department of Medical Imaging, Wynat College of Optical Sciences, University of Arizona, Tucson, AZ, USA
autor
  • Department of Radiology, T. H. Chan Medical School, University of Massachusetts, Worcester, MA, USA
  • Department of Medical Imaging, Wynat College of Optical Sciences, University of Arizona, Tucson, AZ, USA
  • Department of Electrical and Computer Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
Bibliografia
  • 1. Beekman FJ, Kamphuis C, Koustoulidou S, Ramakers RM, Goorden MC. Positron range-free and multi-isotope tomography of positron emitters. Phys Med Biol. 2021;66:065011.
  • 2. Llosá G, Rafecas M. Hybrid PET/Compton-camera imaging: An imager for the next generation. Eur Phys J Plus. 2023;138(3):214.
  • 3. Pratt EC, Lopez-Montes A, Volpe A, Crowley MJ, Carter LM, Mittal V, et al. Simultaneous quantitative imaging of two PET radiotracers via the detection of positron-electron annihilation and prompt gamma emissions. Nat Biomed Eng. 2023;7(8):1028-39.
  • 4. Shimazoe K, Uenomachi M. Multi-molecule imaging and inter-molecular imaging in nuclear medicine. Bio-Algorithms Med Systems. 2022;18(1):127-34.
  • 5. Beyene EY, Das M, Durak-Kozica M, Korcyl G, Mryka W, Niedźwiecki S, et al. Exploration of simultaneous dual-isotope imaging with multi-photon modular J-PET scanner. Bio-Algorithms Med Systems. 2023;19(1):101-8.
  • 6. Moskal P, Baran J, Bass S, Choiński J, Chug N, Curceanu C, et al. Positronium image of the human brain in vivo. Sci Adv. 2024;10(37):eadp2840.
  • 7. Moskal P, Dulski K, Chug N, Curceanu C, Czerwiński E, Dadgar M, et al. Positronium imaging with the novel multiphoton PET scanner. Sci Adv. 2021;7(42):eabh4394.
  • 8. Yoshida E, Tashima H, Nagatsu K, Tsuji AB, Kamada K, Parodi K, et al. Whole gamma imaging: A new concept of PET combined with Compton imaging. Phys Med Biol. 2020;65(12):125013.
  • 9. Manzano LG, Abaline JM, Acounis S, Beaupère N, Beney JL, Bert J, et al. XEMIS2: A liquid xenon detector for small animal medical imaging. Nucl Instrum Methods Phys Res A. 2018;912:329-32.
  • 10. Shoop G, Abbaszadeh S. Combining PET and Compton imaging with edge-on CZT detectors for enhanced diagnostic capabilities. Adv Radiother Nucl Med. 2024;2(2):3330.
  • 11. Pryce MHL, Ward JC. Angular correlation effects with annihilation radiation. Nature. 1947;160:435-35.
  • 12. Snyder HS, Pasternack S, Hornbostel J. Angular correlation of scattered annihilation radiation. Phys Rev. 1948;73:440-8.
  • 13. Bohm D, Aharonov Y. Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky. Phys Rev. 1957;108:1070-6.
  • 14. Moskal P. Towards total-body modular PET for positronium and quantum entanglement imaging. In: IEEE 2018: 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC); 2018 Nov 10-17; New York: IEEE. p. 1-4.
  • 15. Caradonna P, Reutens D, Takahashi T, Takeda S, Vegh V. Probing entanglement in Compton interactions. J Phys Commun. 2019;3:105005.
  • 16. Watts DP, Bordes J, Brown JR, Cherlin A, Newton R, Allison J, et al. Photon quantum entanglement in the MeV regime and its application in PET imaging. Nat Commun. 2021;12:2646.
  • 17. Strizhak A, Abdurashitov D, Baranov A, Ivashkin A, Musin S. Study of the Compton scattering of entangled annihilation photons. Phys Part Nuclei Lett. 2022;19:509-12.
  • 18. Abdurashitov D, Baranov A, Borisenko D, Guber F, Ivashkin A, Morozov S, et al. Setup of Compton polarimeters for measuring entangled annihilation photons. J Inst. 2022;17:P03010.
  • 19. Ivashkin A, Abdurashitov D, Baranov A, Guber F, Morozov S, Musin S, et al. Testing entanglement of annihilation photons. Sci Rep. 2023;13:7559.
  • 20. Moskal P, Kumar D, Sharma S, Beyene EY, Chug N, Coussat A, et al. Non-maximal entanglement of photons from positron-electron annihilation demonstrated using a novel plastic PET scanner. arXiv preprint arXiv:2407.08574.2024.
  • 21. Parashari S, Bosnar D, Friščić I, Kožuljević AM, Kuncic Z, Žugec P, et al. Closing the door on the “puzzle of decoherence” of annihilation quanta. Phys Lett B. 2024;852:138628.
  • 22. Tkachev I, Musin S, Abdurashitov D, Baranov A, Guber F, Ivashkin A, et al. Measuring the evolution of entanglement in Compton scattering. arXiv preprint arXiv:2406.14352.2024.
  • 23. Bordes J, Brown JR, Watts DP, Bashkanov M, Gibson K, Newton R, et al. First detailed study of the quantum decoherence of entangled gamma photons. Phys Rev Lett. 2024;133(13):132502.
  • 24. Caradonna P. Kinematic analysis of multiple Compton scattering in quantum-entangled two-photon systems. Ann Phys. 2024;470:169779.
  • 25. Jan S, Santin G, Strul D, Staelens S, Assié K, Autret D, et al. GATE: A simulation toolkit for PET and SPECT. Phys Med Biol. 2004;49(19):4543-61.
  • 26. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, et al. GEANT4 - a simulation toolkit. Nucl Instrum Methods Phys Res A. 2003;506(3):250-303.
  • 27. Perkins ST, Cullen DE, Chen MH, Rathkopf J, Scofield J, Hubbell JH. Tables and graphs of atomic subshell and relaxation data derived from the LLNL Evaluated Atomic Data Library (EADL), Z= 1-100. Lawrence Livermore National Laboratory; 1991 July. Report No.: UCRL-50400-Vol. 30.
  • 28. Romanchek G, Shoop G, Gholami K, Enlow E, Abbaszadeh S. Quantum entanglement filtering: A PET feasibility study in imaging dual-positron and prompt gamma emission via Monte Carlo simulation. IEEE Trans Radiat Plasma Med Sci. 2024;8(8):916-25.
  • 29. Li M, Yockey B, Abbaszadeh S. Design study of a dedicated head and neck cancer PET system. IEEE Trans Radiat Plasma Med Sci. 2020;4(4):489-97.
  • 30. Wang Y, Herbst R, Abbaszadeh S. Development and characterization of modular readout design for two-panel head-and-neck dedicated PET system based on CZT detectors. IEEE Trans Radiat Plasma Med Sci. 2021;6(5):517-21.
  • 31. Enlow E, Diba M, Clayton J, Harris B, Abbaszadeh S. Impact of flexible circuit bonding and system integration on energy resolution of cross-strip CZT detectors. IEEE Trans Radiat Plasma Med Sci. 2023 Mar 22;7(6):580-6.
  • 32. Gu Y, Levin CS. Study of electrode pattern design for a CZT-based PET detector. Phys Med Biol. 2014;59(11):2599.
  • 33. Abbaszadeh S, Chinn G, Levin CS. Positioning true coincidences that undergo inter-and intra-crystal scatter for a sub-mm resolution cadmium zinc telluride-based PET system. Phys Med Biol. 2018;63(2):025012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5983603-8559-4d1a-a7d6-744c72c44e56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.