Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The goal of the paper is to present an efficient approach to detect and instantiate liquid spilled in the industrial and industrial-like environments. Motivation behind it is to enable mobile robots to automatically detect and collect samples of spilled liquids. Due to the lack of useful training data of spilled substances, a new dataset with RGB images and masks was gathered. A new application of the Mask-RCNN-based algorithm is proposed which has the functionalities of detecting the spilled liquid and segmenting the image.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
193--203
Opis fizyczny
Bibliogr. 23., rys., tab., wykr.
Twórcy
autor
- Security and Defense Systems Division, Łukasiewicz Research Network - Industrial Research Institute for Automation and Measurements PIAP, Warsaw, Poland
- Institute of Information Technology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
autor
- Institute of Information Technology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
Bibliografia
- [1] awsaf49. COCO 2017 Dataset, 2017. https://www.kaggle.com/datasets/awsaf49/coco-2017-dataset, [Accessed: May 2023].
- [2] A.-A. Dalal, Y. Shao, A. Alalimi, and A. Abdu. Mask R-CNN for geospatial object detection. International Journal of Information Technology and Computer Science (IJITCS), 12(5):63-72, 2020. doi:10.5815/ijitcs.2020.05.05.
- [3] G. Gawdzik. Liquid dataset. PIAP Cloud Resources, 2023. https://cloud.piap.pl/index.php/s/ApiXNzt4ZUUSRks, [Accessed: 10 Dec 2023].
- [4] G. Gawdzik. Table of results for all runs of the liquid detection. PIAP Cloud Resources, 2023. https://cloud.piap.pl/index.php/s/cE3mJ8CrCYWUkJ9, [Accessed: 10 Dec 2023].
- [5] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-CNN. In: Proc. 2017 IEEE international Conference on Computer Vision (ICCV), pp. 2980-2988. Venice, Italy, 22-29 Oct 2017. doi:10.1109/ICCV.2017.322.
- [6] W. Jia, Y. Tian, R. Luo, Z. Zhang, J. Lian, et al. Detection and segmentation of overlapped fruits based on optimized Mask R-CNN application in apple harvesting robot. Computers and Electronics in Agriculture, 172:105380, 2020. doi:10.1016/j.compag.2020.105380.
- [7] H. Jung, B. Lodhi, and J. Kang. An automatic nuclei segmentation method based on deep convolutional neural networks for histopathology images. BMC Biomedical Engineering, 1:24, 2019. doi:10.1186/s42490-019-0026-8.
- [8] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, et al. Detection Evaluation. In: COCO. Common Objects in Context [10]. [Accessed: Dec 2023]. https://cocodataset.org/#detection-eval.
- [9] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, et al. Microsoft COCO: Common Objects in Context. arXiv, 2015. ArXiv.1405.0312. doi:10.48550/arXiv.1405.0312.
- [10] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, et al., eds. COCO. Common Objects in Context, 2020. [Accessed May 2023], https://cocodataset.org.
- [11] Anaconda, Inc. Conda Documentation, 2023. https://docs.conda.io, [Accessed: 10 Dec 2023].
- [12] CVAT.ai Corporation. CVAT Open Data Annotation Platform, 2023. https://www.cvat.ai, [Accessed: 10 Dec 2023].
- [13] PyTorch Foundation, a project of The Linux Foundation. PyTorch Get Started, 2023. https://pytorch.org/, [Accessed: 10 Dec 2023].
- [14] TorchVision maintainers and contributors. TorchVision: PyTorch’s Computer Vision library. GitHub repository, 2016. https://github.com/pytorch/vision, [Accessed: Jun 2023].
- [15] R. S. Olson, W. La Cava, P. Orzechowski, R. J. Urbanowicz, and J. H. Moore. PMLB: a large benchmark suite for machine learning evaluation and comparison. BioData Mining, 10(36):1-13, 2017. doi:10.1186/s13040-017-0154-4.
- [16] J. van Rijn, J. Vanschoren, B. Bischl, M. Feurer, G. Casalicchio, et al. OpenML Datasets. https://www.openml.org/search?type=data, [Accessed: Dec 2023].
- [17] J. D. Romano, T. T. Le, W. La Cava, J. T. Gregg, D. J. Goldberg, et al. Penn Machine Learning Benchmarks. https://epistasislab.github.io/pmlb/.
- [18] J. D. Romano, T. T. Le, W. La Cava, J. T. Gregg, D. J. Goldberg, et al. PMLB v1.0: an open-source dataset collection for benchmarking machine learning methods. Bioinformatics, 38(3):878-880, 2021. doi:10.1093/bioinformatics/btab727.
- [19] J. D. Romano, T. T. Le, W. La Cava, J. T. Gregg, D. J. Goldberg, et al. PMLB v1.0: an open source dataset collection for benchmarking machine learning methods. arXiv, 2021. ArXiv:2012.00058v2. doi:10.48550/arXiv.2012.00058.
- [20] D. Sculley, J. Moser, W. Cukierski, J. Rose, M. O’Connell, et al. Kaggle Datasets, 2023. https://www.kaggle.com/datasets, [Accessed: Jan 2023].
- [21] S. Sibirtsev, S. Zhai, M. Neufang, J. Seiler, and A. Jupke. Mask R-CNN based droplet detection in liquid-liquid systems, Part 2: Methodology for determining training and image processing parameter values improving droplet detection accuracy. Chemical Engineering Journal, 473:144826, 2023. doi:10.1016/j.cej.2023.144826.
- [22] H. Su, S. Wei, M. Yan, C. Wang, J. Shi, et al. Object detection and instance segmentation in remote sensing imagery based on precise Mask R-CNN. In: Proc. 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1454-1457. Yokohama, Japan, 28 Jul - 2 Aug 2019. doi:10.1109/IGARSS.2019.8898573.
- [23] P. Su, J. Joutsensaari, L. Dada, M. A. Zaidan, T. Nieminen, et al. New particle formation event detection with Mask R-CNN. Atmospheric Chemistry and Physics, 22(2):1293-1309, 2022. doi:10.5194/acp-22-1293-2022.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5933d20-2d1e-4d37-ad71-cfb3576abdaa