PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Liquid Detection and Instance Segmentation based on Mask R-CNN in Industrial Environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The goal of the paper is to present an efficient approach to detect and instantiate liquid spilled in the industrial and industrial-like environments. Motivation behind it is to enable mobile robots to automatically detect and collect samples of spilled liquids. Due to the lack of useful training data of spilled substances, a new dataset with RGB images and masks was gathered. A new application of the Mask-RCNN-based algorithm is proposed which has the functionalities of detecting the spilled liquid and segmenting the image.
Słowa kluczowe
Rocznik
Strony
193--203
Opis fizyczny
Bibliogr. 23., rys., tab., wykr.
Twórcy
  • Security and Defense Systems Division, Łukasiewicz Research Network - Industrial Research Institute for Automation and Measurements PIAP, Warsaw, Poland
  • Institute of Information Technology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
  • Institute of Information Technology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
Bibliografia
  • [1] awsaf49. COCO 2017 Dataset, 2017. https://www.kaggle.com/datasets/awsaf49/coco-2017-dataset, [Accessed: May 2023].
  • [2] A.-A. Dalal, Y. Shao, A. Alalimi, and A. Abdu. Mask R-CNN for geospatial object detection. International Journal of Information Technology and Computer Science (IJITCS), 12(5):63-72, 2020. doi:10.5815/ijitcs.2020.05.05.
  • [3] G. Gawdzik. Liquid dataset. PIAP Cloud Resources, 2023. https://cloud.piap.pl/index.php/s/ApiXNzt4ZUUSRks, [Accessed: 10 Dec 2023].
  • [4] G. Gawdzik. Table of results for all runs of the liquid detection. PIAP Cloud Resources, 2023. https://cloud.piap.pl/index.php/s/cE3mJ8CrCYWUkJ9, [Accessed: 10 Dec 2023].
  • [5] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-CNN. In: Proc. 2017 IEEE international Conference on Computer Vision (ICCV), pp. 2980-2988. Venice, Italy, 22-29 Oct 2017. doi:10.1109/ICCV.2017.322.
  • [6] W. Jia, Y. Tian, R. Luo, Z. Zhang, J. Lian, et al. Detection and segmentation of overlapped fruits based on optimized Mask R-CNN application in apple harvesting robot. Computers and Electronics in Agriculture, 172:105380, 2020. doi:10.1016/j.compag.2020.105380.
  • [7] H. Jung, B. Lodhi, and J. Kang. An automatic nuclei segmentation method based on deep convolutional neural networks for histopathology images. BMC Biomedical Engineering, 1:24, 2019. doi:10.1186/s42490-019-0026-8.
  • [8] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, et al. Detection Evaluation. In: COCO. Common Objects in Context [10]. [Accessed: Dec 2023]. https://cocodataset.org/#detection-eval.
  • [9] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, et al. Microsoft COCO: Common Objects in Context. arXiv, 2015. ArXiv.1405.0312. doi:10.48550/arXiv.1405.0312.
  • [10] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, et al., eds. COCO. Common Objects in Context, 2020. [Accessed May 2023], https://cocodataset.org.
  • [11] Anaconda, Inc. Conda Documentation, 2023. https://docs.conda.io, [Accessed: 10 Dec 2023].
  • [12] CVAT.ai Corporation. CVAT Open Data Annotation Platform, 2023. https://www.cvat.ai, [Accessed: 10 Dec 2023].
  • [13] PyTorch Foundation, a project of The Linux Foundation. PyTorch Get Started, 2023. https://pytorch.org/, [Accessed: 10 Dec 2023].
  • [14] TorchVision maintainers and contributors. TorchVision: PyTorch’s Computer Vision library. GitHub repository, 2016. https://github.com/pytorch/vision, [Accessed: Jun 2023].
  • [15] R. S. Olson, W. La Cava, P. Orzechowski, R. J. Urbanowicz, and J. H. Moore. PMLB: a large benchmark suite for machine learning evaluation and comparison. BioData Mining, 10(36):1-13, 2017. doi:10.1186/s13040-017-0154-4.
  • [16] J. van Rijn, J. Vanschoren, B. Bischl, M. Feurer, G. Casalicchio, et al. OpenML Datasets. https://www.openml.org/search?type=data, [Accessed: Dec 2023].
  • [17] J. D. Romano, T. T. Le, W. La Cava, J. T. Gregg, D. J. Goldberg, et al. Penn Machine Learning Benchmarks. https://epistasislab.github.io/pmlb/.
  • [18] J. D. Romano, T. T. Le, W. La Cava, J. T. Gregg, D. J. Goldberg, et al. PMLB v1.0: an open-source dataset collection for benchmarking machine learning methods. Bioinformatics, 38(3):878-880, 2021. doi:10.1093/bioinformatics/btab727.
  • [19] J. D. Romano, T. T. Le, W. La Cava, J. T. Gregg, D. J. Goldberg, et al. PMLB v1.0: an open source dataset collection for benchmarking machine learning methods. arXiv, 2021. ArXiv:2012.00058v2. doi:10.48550/arXiv.2012.00058.
  • [20] D. Sculley, J. Moser, W. Cukierski, J. Rose, M. O’Connell, et al. Kaggle Datasets, 2023. https://www.kaggle.com/datasets, [Accessed: Jan 2023].
  • [21] S. Sibirtsev, S. Zhai, M. Neufang, J. Seiler, and A. Jupke. Mask R-CNN based droplet detection in liquid-liquid systems, Part 2: Methodology for determining training and image processing parameter values improving droplet detection accuracy. Chemical Engineering Journal, 473:144826, 2023. doi:10.1016/j.cej.2023.144826.
  • [22] H. Su, S. Wei, M. Yan, C. Wang, J. Shi, et al. Object detection and instance segmentation in remote sensing imagery based on precise Mask R-CNN. In: Proc. 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1454-1457. Yokohama, Japan, 28 Jul - 2 Aug 2019. doi:10.1109/IGARSS.2019.8898573.
  • [23] P. Su, J. Joutsensaari, L. Dada, M. A. Zaidan, T. Nieminen, et al. New particle formation event detection with Mask R-CNN. Atmospheric Chemistry and Physics, 22(2):1293-1309, 2022. doi:10.5194/acp-22-1293-2022.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5933d20-2d1e-4d37-ad71-cfb3576abdaa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.