Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present paper, the Generalized Differential Transform Method (GDTM) is used for obtaining the approximate analytic solutions of a free vibration linear differential equation of a single-degree-of-freedom (SDOF) system with fractional derivative damping. The fractional derivatives are described in the Caputo sense.
Rocznik
Tom
Strony
19--29
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
- Department of Mathematics, Ghani Khan Choudhury Institute of Engineering and Technology Narayanpur, Malda, West Bengal-732141, India
Bibliografia
- [1] Zhou, J.K. (1986). Differential Transformation and its Applications for Electrical Circuits. Wuhan: Huazhong University Press.
- [2] Chen, C.K., & Ho, S.H. (1999). Solving partial differential equations by two dimensional differential transform method. Appl. Math. Comput., 106, 171-179.
- [3] Ayaz, F. (2004). Solutions of the systems of differential equations by differential transform method. Appl. Math. Comput., 147, 547-567.
- [4] Abazari, R., & Borhanifar, A. (2010). Numerical study of the solution of the Burgers and coupled Burgers equations by a differential transformation method. Comput. Math. Appl., 59, 2711-2722.
- [5] Chen, C.K. (1999). Solving partial differantial equations by two dimensional differential transformation method. Appl. Math. Comput., 106, 171-179.
- [6] Jang, M.J., & Chen, C.K. (2001). Two-dimensional differential transformation method for partial differantial equations. Appl. Math. Comput., 121, 261-270.
- [7] Kangalgil, F., & Ayaz, F. (2009). Solitary wave solutions for the KDV and mKDV equations by differential transformation method. Choas Solitons Fractals, 41, 464-472.
- [8] Arikoglu, A., & Ozkol, I. (2006). Solution of difference equations by using differential transformation method. Appl. Math. Comput., 174, 1216-1228.
- [9] Momani, S., Odibat, Z., & Hashim, I. (2008). Algorithms for nonlinear fractional partial differential equations: A selection of numerical methods. Topol. Method Nonlinear Anal., 31, 211-226.
- [10] Arikoglu, A., & Ozkol, I. (2007). Solution of fractional differential equations by using differential transformation method. Chaos Solitons Fractals, 34, 1473-1481.
- [11] Soltanalizadeh, B., & Zarebnia, M. (2011). Numerical analysis of the linear and nonlinear Kuramoto-Sivashinsky equation by using Differential Transformation Method. Inter. J. Appl. Math. Mechanics, 7(12), 63-72.
- [12] Tari, A., Rahimi, M.Y., Shahmoradb, S., & Talati, F. (2009). Solving a class of two-Dimensional linear and nonlinear Volterra integral equations by the differential transform method. J. Comput. Appl. Math., 228, 70-76.
- [13] Nazari, D., & Shahmorad, S. (2010). Application of the fractional differential transform method to fractional-order integro-differential equations with nonlocal boundary conditions. J. Comput. Appl. Math., 234 ,883-891.
- [14] Borhanifar, A., & Abazari, R. (2011). Exact solutions for non-linear Schr.dinger equations by differential transformation method. J. Appl. Math. Comput., 35, 37-51.
- [15] Borhanifar, A., & Abazari, R. (2010). Numerical study of nonlinear Schr.dinger and coupled Schr.dinger equations by differential transformation method. Optics Communications, 283, 2026-2031.
- [16] Momani, S., Odibat, Z., & Erturk, V.S. (2007). Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation. Physics Letters. A, 370(5-6), 379-387.
- [17] Odibat, Z., & Momani, S. (2008). A generalized differential transform method for linear partial Differential equations of fractional order”. Applied Mathematics Letters, 21(2), 194-199.
- [18] Odibat, Z., Momani, S., & Erturk, V.S. (2008). Generalized differential transform method: application to differential equations of fractional order. Applied Mathematics and Computation, 197(2), 467-477.
- [19] Ertiirka, V.S., & Momanib, S. (2010). On the generalized differential transform method: application to fractional integro-differential equations. Studies in Nonlinear Sciences, 1(4), 118-126.
- [20] Garg, M., Manohar, P., & Kalla, S.L. (2011). Generalized differential transform method to Space-time fractional telegraph equation. Int. J. of Differential Equations, Hindawi Publishing Corporation, vol. 2011, article id. 548982, 9 pages, DOI: 10.1155/2011/548982.
- [21] Bansal, M.K., & Jain, R. (2015). Application of generalized differential transform method to fractional order Riccati differential equation and numerical results. Int. J. of Pure and Appl. Math., 99(3), 355-366.
- [22] Cetinkaya, A., Kiymaz, O., & Camli, J. (2011). Solution of non linear PDE’s of fractional order with generalized differential transform method. Int. Mathematical Forum, 6(1), 39-47.
- [23] Das. S. (2008). Functional Fractional Calculus, Springer.
- [24] Miller, K.S., & Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Diff. Equations. John Wiley and Son.
- [25] Caputo, M. (1967). Linear models of dissipation whose q is almost frequency independent-ii. Geophys. J. R. Astron. Soc., 13, 529-539.
- [26] Podlubny, L. (1999). Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Academic Press.
- [27] Almeida, R., & Torres, D.F. (2011). Necessary and sufficient conditions for the fractional calculus of variations with caputo derivatives. Communications in Nonlinear Science and Numerical Simulation, 16, 1490-1500
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5930840-518a-4915-b9cc-02c07ac4093a