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Abstract Next Generation Sequencing is a technology for genome sequencing used in ge-

netics for the diagnosis of disease. NGS provides a list of all mutations in

a genome, so identifying the one that causes a disease is not trivial. A number

of applications for variant prioritization were developed, but the data they pro-

vide is a suggestion rather than a diagnosis; moreover, they suffer from issues

such as identifying a nonpathogenic variant as a causal one or the inability to

identify a causal gene. These issues inspired us to create a strategy for vari-

ant prioritization, which includes the use of the Exomiser and OMIM Explorer

result sets improved by semantic analysis of abstracts and articles freely avai-

lable from the PubMed and PubMed Central databases. For the wider scope

of scientific articles, the Google Scholar repository will be used. The described

approach enables us to present the latest and most accurate information about

potential pathogenic variants.
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1. Introduction

The information about each living organism is programmed in its DNA. DNA is a mo-

lecule composed of two coiled strands called the double helix. A DNA molecule con-

sists of smaller sections (nucleotides), which are built from sugar, a phosphate group,

and a nucleobase such as cytosine (C), guanine (G), adenine (A), or thymine (T).

The nucleobases create pairs according to the rule that C always pairs with G and

A always pairs with T [2]. The DNA strand contains many genes that are formed

in the chromosomes. Humans have 46 chromosomes. Half of them are received from

one parent and the other half come from the other. Genes consist of some number of

nucleotides and are the units of heredity. Genes can have different variants called al-

leles, which differ by one or more nucleotides. The process of creating new variations

is called mutation. Mutations lead to population variety, but it can also be a cause of

genetic diseases. Alleles can be dominant or recessive. The dominant allele is respon-

sible for the dominant phenotype. This means that this allele determines the specific

phenotype. For recessive phenotype manifestation, it is required that both copies of

the allele be recessive. If both alleles (from the mother and father) of the same gene

are the same for a particular trait they cause, the organism is called homozygous. If

the alleles are different, then it is called heterozygous. Knowledge about genes and

DNA is broadly used for genetic disease diagnostics. A contemporary technology such

as Next-Generation Sequencing enables the sequencing of the entire human genome in

one day [8]. The variety of methods allows for the selection of the most efficient and

appropriate one, like sequencing an entire genome, coding genes (a whole exome), or

analyzing only individual genes. The NGS analysis enables the gene variants respon-

sible for genetic disorders to be located; however, due to the large amount of data,

some additional analysis is required. A number of applications have been developed

in order to facilitate the search for disease-causing variants. Although the programs

employ sophisticated algorithms to compare patient data with the available genetic

databases, the results can be treated more like a suggestion than a real diagnosis.

The final list of provided pathogenic variants needs to be analyzed by a physician and

considered important or not according to a geneticist’s best knowledge. The analysis

performed by several applications also uses animal genetic databases due to the lack

of sufficient information in the human datasets. During the research performed with

Warsaw Medical University, some examples showed the limitations of variant priori-

tization programs. An Exomiser prioritization tool indicated the WSF5 variant as

a pathogenic one; however, according to the ClinVar tool, it is not a causal variant.

Another example of an Exomiser application occurred in the analysis of a patient

with a diagnosed SPATA5 variant. Although the mutation is described in PubMed

and has an entry in Online Mendelian Inheritance in Man (OMIM) with the analyzed

phenotype database, Exomiser did not indicate such a variant in its results. This issue

demonstrates that complex algorithms may not always be suitable for simple analysis.

An additional analysis that could confront variant prioritization application results

with the latest scientific knowledge is needed. Such a solution can be implemented
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as a semantic analysis tool of the PubMed database containing a broad variety of

the latest medical articles. Pointing to the latest research about a specific analyzed

genetic variant may bring a considerable advantage to the diagnosis process.

2. State of the art

Coincident with the rise of genome-wide data for diagnostics has been the develop-

ment of standards and catalogs for clinical sign-out [18] [32] [33]. Much of the focus

has been on distinguishing clearly deleterious variants from other variants with less

clear contributions to disease. Central to these efforts has been the development

of compendia for matching the observed variations to well-vetted disease informa-

tion [28] [27]. Some variants cataloged as deleterious can also appear in unaffected

individuals; therefore, additional tools have become necessary to identify the specific

variants or variant combinations such as variant pairs for recessive diseases that may

explain the observed phenotypes in affected individuals [47]. Parallel to the deve-

lopment of catalogs and standards for variant analysis has been the development of

systematic tools for representing patient information. Initially constructed in 2008,

the Human Phenotype Ontology (HPO) is a representation of the features of human

diseases and the hierarchical relationships that exist among them [35].

2.1. Phenomizer

A key application of this work is Phenomizer, a software tool used for making compa-

risons between known diseases and patient phenotypes [23]. This tool uses semantic

similarity methods to match patient characteristics as represented in the HPO to the

OMIM disease catalog, which is also mapped to the ontology. Phenomizer returns

candidates within the differential diagnosis as lists and tables, with the scores repre-

senting the quality of the match [23]. The goal of variant prioritization is to construct

an ordered ranking of an observed genetic variation. This objective differs from that

of a differential diagnosis, the fundamental purpose of Phenomizer. To bridge the

gap between disease rankings and gene or variant rankings, extensions of this initial

approach have been developed and applied to the genome-wide diagnostic data. Two

such tools are PhenIX [28] [47] [30] and Phenomantics [30], which directly leverage the

Phenomizer’s semantic similarity calculation to consider the genome-wide genotypic

data.

2.2. eXtasy

On the other hand, the eXtasy tool [38] takes a data-integration approach (geno-

mic data fusion [5]) to variant prioritization. To generate an overall prediction of

causality, ten different measures of variant deleteriousness from existing tools and

databases along with a gene haploinsufficiency prediction score are combined with a

phenotype-specific gene score. The phenotype-based method takes all disease genes

known to be associated with a particular HPO term or terms from Phenomizer [23]
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and scores the similarity of each candidate gene in the exome of this gene set using the

Endeavour algorithm [5]. Endeavour uses various measures of gene similarity, such

as sequence similarity and co-expression, as well as involvement in the same protein-

protein interactions or pathways. A Random Forest algorithm is used to produce a

single combined candidacy score from all of these sources of evidence. For variants

that are missing data from any of the methods, an imputed score is calculated that

ignores haploinsufficiency and uses median values across all variants for the missing

deleteriousness scores. Receiver operating characteristic (ROC) analysis was used to

assess the ability of eXtasy to discriminate disease-causing variants from rare control

variants or common polymorphisms. This analysis showed substantial improvement

when compared to classical deleterious prediction methods such as PolyPhen, SIFT,

MutationTaster, and CAROL. Currently, eXtasy only performs a prioritization of

non-synonymous variants; however, when public datasets that are large enough for

training become available, it will be expanded to include mitochondrial, noncoding,

synonymous, and nonsense variants as well as mutations around the splice junction

that affect splicing, insertion, and deletion of base mutations (indels). eXtasy does

not perform filtering, so it is recommended that the exome is pre-filtered to remove

off-target or common (MAF>1 %) variants [38].

2.3. Phevor

Phevor [39] takes the outputs of variant-prioritization tools such as ANNOVAR or

the Variant Annotation Analysis Search Tool (VAAST) [46] and then prioritizes the

remaining genes using phenotype, gene function, and disease data. This knowledge

comes from publicly available gene annotation sets from various biomedical ontologies

such as the HPO, Mammalian Phenotype Ontology (MPO) [14] [44], Disease Ontology

(DO) [24], and Gene Ontology (GO) [11]. Users specify a list of terms from HPO,

DO, MPO, GO, or OMIM [7] that characterize what is known about the patient.

Phevor then generates a list of genes that have been annotated with these terms or

their parent terms (if no gene annotations exist). Next, it identifies terms in the other

ontologies that are annotated to these genes, and the process is repeated to expand the

gene list. Thus, concepts in different ontologies are related through their annotation

of the same gene. Finally, each gene receives a score based on the propagation of

the seed nodes in each ontology and a combination procedure across the scores from

the various ontologies. The final Phevor score combines the ranking information for

the variant prioritization tool (or P-value from VAAST) with this gene score. The

benchmarking of Phevor on simulated disease exomes based on in-house generated

exomes demonstrated a considerable improvement over variant prioritization methods

such as ANNOVAR and VAAST, with 95-100% of the exomes having the causative

variant in the top ten candidates. Three case studies where Phevor was used to

identify disease-causing alleles have also been presented [4].
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2.4. Phen-Gen

Phen-Gen [22] uses a Bayesian framework to compare the predicted deleterious vari-

ants in the patient’s exome and known patient symptoms to the prior knowledge of

human disease-gene associations and gene interactions. Coding variants are analyzed

using a unifying framework to predict the damaging impact of the non-synonymous,

splice-site, and indel variants. Phen-Gen also allows a genome-wide approach in

which evolutionary conservation and the Encyclopedia of DNA Elements (ENCODE)-

predicted functionality and proximity to the coding sequences are used to score non-

coding variants. Any variant that has an MAF above 1% is removed from further

analysis. Healthy individuals contain many damaging mutations, and the fact that

this ability to tolerate mutations varies from gene to gene is also taken into account

using a null model. This model uses the observed variants from the 1000 Genomes

Project to generate a null distribution under either a dominant or recessive inheri-

tance model for each gene. Genes are only retained for further analysis if the predicted

damaging score for the variants exceeds that seen for 99% of the 1000 Genomes da-

taset. These remaining genes are then analyzed using the Phenomizer algorithm to

semantically match the patient’s phenotypes encoded using HPO to known disease-

gene associations. The role of the novel (non-disease) genes is assessed by identifying

functionally related genes using a random-walk-with-restart algorithm over a gene

interaction network. Phenotype matches are distributed to these novel genes across

the network such that the disease gene hub gets the majority of the score (90%) and

the other genes each get a share of the remainder (according to their proximity to the

disease gene). Benchmarking using the simulated exomes that were based on 1000

Genomes Project data showed that the correct disease variant was obtained as the

top hit in 88% of the samples. Using a strategy in which the known associations

were masked to simulate the discovery of novel associations, performance figures of

56% and 89% were obtained for the dominant and recessive disorders, respectively. In

an evaluation using real patient data, 11 trios with recessive or X-linked intellectual

disabilities were analyzed, and 81% of the reported genes were among the top ten

candidates [22].

2.5. Exomiser

The original implementation of Exomiser [36] used semantic similarity comparisons

between patient phenotypes and mouse phenotype data for each candidate gene in

the exome. The PhenoDigm algorithm [43] is used to score each gene from 0 to 1,

where 1 represents a perfect match, and genes with no data receive a default score

of 0.6. This phenotype score is combined with a variant score that is based on allele

rarity in the 1000 Genomes Project and ESP datasets together with the predictions

of deleteriousness from PolyPhen, SIFT, and MutationTaster. Benchmarking on the

simulated exomes based on 1000 Genomes Project data showed that 66% of the cases

had the causative variant as the top hit under a dominant model and 83% under a

recessive model [36]. Exomiser has been subsequently improved to include compari-
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sons with human and fish phenotypes as well as the use of a random-walk with restart

to score genes with no phenotype data (genes are scored based on their proximity to

other genes in the StringDB interaction network that show phenotypic similarities to

the patient data) [42].

2.6. PhenIX

PhenIX [47] [3] uses the same software framework as Exomiser; however, instead of

using human, mouse, fish, and protein-protein association data, this tool is restricted

to comparisons between patient phenotypes and the known disease gene phenotypes.

This simplification is made because PhenIX is intended for diagnostic tasks in which

only known the disease genes can be reported. In addition, the semantic similarity

algorithm uses the Phenomizer algorithm [23]. Benchmarking on sequence files gene-

rated from a target-enrichment panel that was based on the known disease-associated

genes revealed that 97% of the samples had the inserted variant as the top hit regard-

less of the inheritance model. The same performance was observed when using 1000

Genomes Project exomes [40].

2.7. OMIM Explorer

OMIM Explorer [20] introduces an interactive approach to variant prioritization. The

implemented plots of the global and local visualizations enable the user to control

the analysis results. The patient phenotype can be input in a free-text form and is

transformed to the HPO annotation with a natural language processing tool (Bio-

Lark Concept Recognizer [19]). The genotype data should be entered in the VCF

format pre-filtered to <1% MAF (population minor allele frequency) or as a list of

the main (rare) variant genes. OMIM Explorer uses a semantic similarity method to

compare the patient phenotype to the OMIM catalog. To determine the similarity, two

methods are used: the Resnik method [31] or ATO (ancestral term overlap). Variant

frequency and pathogenicity are computed based on data from the ExAC database [1]

and with the MutationTaster tool [37]. An analysis with autosomal dominant and

autosomal recessive inheritance of the genetic disease models is available to the OE

user. The default setup applies no filter for this. An algorithm for novel disease-

causing gene discovery is also implemented in the application. First, the patient’s

phenotype is mapped to the OMIM records to receive the group of genes that causes

diseases similar to the patient’s phenotype. After that, the PINA 2.0 PPI network [12]

is used to discover the patient’s variants using the training set.

3. Technical review of Exomiser and OMIM Explorer tools

3.1. Exomiser

Exomiser [41] is an application for variant prioritization based on whole-exome se-

quencing results. The tool analyzes genetic data provided in a Variant Call Format
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(VCF) file and a set of Human Phenotype Ontology (HPO) terms. Exomiser’s ana-

lysis consists of two main parts: filtering and prioritization. First, each of the input

variants is annotated to the relative one from the hg19 database to gather information

about them. After this, the variants not required for analysis are filtered out from the

dataset. Exomiser enables an analysis to be performed with user-defined parameters.

The two used most often are the minor allele frequency (MAF) filter (which enables

us to find the rarest variants among all variants from the input dataset) and the ex-

pected inheritance pattern filter. Three options are available for inheritance pattern

filtering: autosomal dominant (AD), autosomal recessive (AR), and X-linked (X).

The filter restricts the output data for genes containing heterozygous variants (AD),

genes containing homozygous or two heterozygous variants (AR), or X-chromosomal

genes. Exomiser also enables the possibility of family-based filtering, which requires

an additional input file (PED) containing family members’ genes. Prioritization of

the patient’s variants is determined based on how rarely the variant occurs in the 1000

Genomes Project [40] and Exome Sequencing Project (ESP 6500) datasets. Four main

prioritization methods are used in Exomiser. The PHIVE (Phenotypic Interpretation

of Variants in Exomes) algorithm uses mouse gene data as a comparison to the human

gene model. The mouse data comes from the Mouse Genome Database (MGD) [10]

and the International Mouse Phenotyping Consortium [9]. The PhenIX algorithm

is a tool for clinical diagnosis where only human data can be used. The algorithm

computes variant ranking on the basis of the pathogenicity and semantic similarity of

phenotypes from HPO that are connected to the Mendelian disease. The ExomWalker

algorithm is used for discovering new causal genes by searching for the mutated genes

that interact with the genes that are already implicated in a disease. The ExomWal-

ker employs a random walk with restart algorithm. The random walk algorithm is a

method usually used for image segmentation [17]. Having some number of predefined

labeled pixels, the unlabeled pixels are assigned to the proper categories on the basis

of the greatest probability of reaching the predefined pixel with a random walker.

Exomiser uses a similar mechanism for discovering causal genes among closely inte-

racting genes (a mutation of any gene in such a group will cause a similar phenotype).

The user inputs the list of suspected genes, and the algorithm calculates which mu-

tated gene is closely related to the inputted one in the protein-protein association

network. The hiPHIVE method calculates variant ranking using human, mouse, and

zebrafish data. Human data comes from OMIM and Orphanet databases. Zebrafish

gene information comes from the Zebrafish Model Organism (ZFIN) database. To

compute a variant’s ranking, Exmiser uses two indicators: the variant and phenotype

scores. The variant score is a measure that shows the pathogenicity and frequency of

the variant. Pathogenicity is calculated on the basis of the scores from three sources:

the Polyphen2, MutationTaster and 1 SIFT scores. Frequency is determined with

the use of the 1000 Genomes Project and ESP data. The variant score result is a

compounding of these two scores. If no result can be established, the default value of

0.6 is assigned. The phenotypic score is calculated based on the semantic similarity

of the patient’s phenotype and phenotype-gene annotations for humans, mice, and
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zebrafish (for hiPHIVE). Besides this, a random-walk algorithm is used to compare

the patient’s phenotype to the related phenotypes of the nearby genes. A network for

the computation is created with the use of STRING (Search Tool for the Retrieval

of Interacting Genes/Proteins). The result of the algorithm is a probability vector

with values between 0 and 1. The values from the vector (which are the proximity

scores for the analyzed genes) are used as a weight for a phenotyping relevance score.

The results are rescaled from 0 to 0.6. The final phenotypic score is computed as

a maximum value from the semantic similarity analysis and random-walk algorithm.

The variant and phenotypic scores are finally used to calculate the Exomiser Score,

which is computed as follows:

ExomiserScore =
1

(1 + e(−(−13,96+11,61∗PhenotypeScore+11,61∗V ariantScore)))
(1)

3.2. OMIM Explorer

OMIM Explorer is an interactive web-based tool that was created for diagnostics ba-

sed on a patient’s phenotype information and genotype data. The application uses

the OMIM database and HPO to integrate and analyze the medical information.

OMIM [6] is an open-access medical database that contains human phenotypes and

genes. It is updated daily based on the published biomedical literature. All of the

entries in a database are numbered and marked according to their level of certainty

(if they are reviewed or not). The tool also provides Morbid Map and Synopsis Map

views of the relationships between the gene and the disease. HPO [35] is a database

providing a structured set of phenotype abnormality terms. The ontology was cre-

ated based on OMIM records and is broadly used by various medical applications.

Genetic and phenotypic information is provided as input data for the OMIM Explorer

application. The phenotype can be provided in a free-text form from which the HPO

terms are extracted or in a list of HPO terms. Gene information might be uploa-

ded as a VCF format file or as a list of genes. Based on the provided HPO terms,

the diagnostic disease ranking is calculated as semantic similarity, a technique that

computes matches between the queried term and the ontology. Two main methods

are used by OE: Resnik [31] and ATO (but also, ATO weighted by the GO-Universal

information and ATO weighted by annotation-based information content). The scores

are calculated for all OMIM diseases. They could also be restricted to those present

in an OMIM Morbidmap, the chosen genetic model (dominant or recessive), linked

to the genetic variants, or set as required by a user. To compute the results for the

inputted variant genes, the OE tool uses a transitive closure approach based on the

phenotype and disease matches. The scores are calculated only for the diseases that

the OMIM database maps for the input genes. The result is determined by function

F, which computes the aggregation of similarity scores of the phenotype data diseases

related to the genes. F can be a maximum, mean, or sum. For comparison, the

algorithm of the direct gene scoring approach is also used (the same as with Phe-

nomantics) as well as the method of computing the unions of phenotypes related to
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input genes by the OMIM Morbidmap (the same as with PhenIX). The data can be

analyzed as dominant or recessive genetic models. As OE is an interactive tool, two

main visualizations are available. The global one is an interactive map of all available

OMIM diseases distributed with the Multidimensional Scaling (MDS) [45] method.

The position of the patient’s disease on a chart is computed on the basis of the m

nearest neighbors, where m can be chosen by the user. Local visualization presents

the patient’s query in the center and the most similar diseases placed on the radar

according to their one-dimensional MDS results. The chart diseases are scaled based

on their variant frequency in the ExAC database [1] and colored by their variant

pathogenicity score calculated by the MutationTaster tool [37]. Visualization enables

the interactive exclusions of selected diseases from the analysis. OE has an algorithm

for novel gene and variant discovery that is generally based on the similarity of the

patient’s phenotype to OMIM entries in order to identify the set of genes mapped to

the diseases that are most similar to the patient’s query. After this step, the PINA

2.0 PPI [12] network is used to discover the candidate genes. OMIM Explorer also

provides additional features (like phenotype suggestions) based on rare phenotypes

that are not present in a patient’s query but are annotated as most similar to the

patient’s disease.

4. Authors’ solutions to Next Generation Sequencing results

analysis

4.1. Implementation of Exomiser as Cloud Service

The main goal of this research was to provide Warsaw Medical University (WUM) with

a usable genetic diagnostic tool. Because most research conducted on scientific NGS

was not necessary, the main problem was the data filtration in order to provide robust

and accurate results that would be highly related to only potential human diseases.

It was not possible to return adequate information about gene mutation in other

species. First, the Exomiser tool was used and a special tool implemented in order to

carry on user queries in an automatic manner. Unfortunately, the results provided by

Exomiser were not accurate, and a lot of noisy data was provided. The experiments

were conducted on eight random and anonymous sequenced gene samples provided

by the WUM. Table 1 presents the number of results provided by the Exomiser tool

without any modifications.

As presented in Table 1, such an enormous number of potential results makes it

very hard or even impossible for a doctor to make the right diagnosis in an affordable

amount of time. Also, the accuracy of such results is very low. This is why we were

able to adjust adequate filtering strategies for such an analysis in an empirical study

based on the patient’s HPOs and doctor’s suspicions. First of all, as a pre-analysis

step, we removed the synonymous gene variants, intron variants, and intergenic va-

riants (coding and non-coding). Because disease-causing mutations are rare, we also

filtered the sequenced input variants by frequency.
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Table 1

Number of results provided by Exomiser with adjusted filtering strategy

Sample ID Number of results

1 18

2 15

3 15

4 23

5 19

6 17

7 12

8 18

When conducting an autosomal dominant analysis, the maximum frequency was

set to 0.0001; for the autosomal recessive ? 0.3; and for the X recessive ? 0.0003 [29].

We also removed the results with a prioritization score lower than 0.5 using the

HiPhive prioritization algorithm [21]. With this strategy, we greatly reduced the

number of results (as presented in Table 2).

Table 2

Number of results provided by Exomiser without modifications.

Sample ID Number of results

1 1462

2 1375

3 2034

4 1653

5 3261

6 1742

7 1274

8 1563

Because not all of the results were known to be pathogenic, we annotated the re-

sults in accordance to the ClinVar database that archives and aggregates information

about relationships among variations and human health [27]. Unfortunately, the re-

sults were only partially satisfactory. While some results correlated with the doctor’s

judgments and some were potentially interesting because of the correspondence with

other species, they were not analyzed enough to be treated as diagnoses. Because of

this, a trial was made to use the most recent OMIM Explorer tool. OMIM Explorer

did not encounter as many resultant pathogenic variants as Exomiser. The analysis

was performed with the default application settings. No inheritance model was cho-

sen. The input VCF [13] file for OMIM Explorer needs to be pre-filtered with MAF.

Files that contain more than 100,000 rows are not processed by the program. The
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experiment was provided with the same set of patient data as used in Exomiser. In

Table 3, we present the number of results provided by OMIM Explorer.

Pathogenic variants returned by OE-overlapped Exomiser only results in a small

range, with a maximum number of two common variants and a minimum of zero

similar results.

Table 3

Number of results provided by OMIM Explorer

Sample ID Number of results

0 16

1 19

2 12

3 15

4 14

5 19

6 15

7 14

8 13

The OMIM Explorer tool is a web application that requires direct user engage-

ment in the analysis process. To simplify the use of OE, the web crawler tool was

developed. A script enables the VCF file to be provided as well as the phenotype as

a list of HPO terms. Such an approach will also facilitate an automatic comparison

of the different variant prioritization application results. Both OMIM Explorer and

Exomiser suffered very similar drawbacks. We also discovered that some recently dis-

covered diseases causing gene mutations were not or gene mutations that no longer are

considered to be problematic for human health were within the prioritization results.

In a real-life diagnosis, such mistakes should not appear and the databases should be

as current as possible.

4.2. Semantical human-genetic diagnoser (HGD)

The problems described in Section 4.1 made us prepare more-sophisticated diagnosis

strategies. First, we interpolated the results of Exomiser and OMIM Explorer. Se-

cond, we developed a semantic text analysis tool accompanied with web crawlers in

order to analyze scientific research articles. For this purpose, a sophisticated search

engine (ElasticSearch) was used [16]. At first, our web crawlers downloaded abstracts

from the PubMed repository (only abstracts, which are freely available) [25], and

facilitated articles and supplementary files freely available in the PubMed Central

database [34]. Third, using the Python tool we implemented with the ElasticSearch

engine, we queried those repositories using the diagnosed HPOs and genes prioriti-

zed with Exomiser and OMIM Explorer. Our search engine semantically analyzed

abstracts, articles, and supplementary files. Not only was the HPO-gene relationship
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queried, but the publication release date, number of keyword hits, and number of

citations were also taken into account [26]. In addition, we also queried the Google

Scholar repository (which has a wider scope) and interpolated both search results [15].

Lastly, having the search results gathered, we altered the prioritization results in ac-

cordance with the findings. The most-relevant results were at the top of the list,

whereas irrelevant or out-of-date results were removed. If no very accurate answer

could be given to the user, the tool provided him/her with a list of articles that corre-

late with the disease for his/her own judgment. Such a methodology allows users to

receive up to five relevant results in most cases. The current version of our semantic

text analysis provides a web browser searching interface. Simple logical operations of

conjunction and disjunction can be applied to a query. Moreover, a user-defined slop

is available for use. Slop describes how the searched terms can be distant from each

other in an article. a slop with a value of 1 allows for at most one additional word

placed between the searched words. The default value for the slop in our tool is 5. A

returned-results score is presented as a graphical star ratio.

4.3. Authors’ motivation

The aim of our work is to support the process of diagnosing patients with genetic

diseases. The solution we developed facilitates two difficulties in the diagnoses: the

huge amount of data provided by the Next Generation Sequencing process, and the

great number of scientific articles published in the genetic area. We use stable and

reliable tools to provide the most-probable causal variants from the input data. It

provides suggestions for the doctor regarding which variants needs to be analyzed

first. The list of causal variants is verified with the scientific articles from the PubMed

repository. The doctor can decide whether the proposed variant is valuable for the

diagnosis and the knowledge about the variant could be completed. The solution

allows for an automatic data analysis. The process of diagnosis can be faster and

more efficient, which brings benefits to the doctors and patients because the treatment

can be started earlier. The doctor does not need to analyze a huge amount of data.

Supported by knowledge from scientific papers, the diagnosis could be more precise

and accurate.

5. Results and Conclusions

In an experiment with our HGD tool, we used nine anonymous VCF files [13] that were

first analyzed with the Exomiser and OMIM Explorer applications. The Exomiser

settings and filters were set with the values described in Section 4.1 of this article.

The OMIM Explorer analysis was run with default OE settings. The same HPO terms

were provided to both tools. Exomiser usually returned a slightly larger number of

suggested pathogenic variants than OMIM Explorer did. The comparison of the two

resultant sets of each sample revealed that some variant suggestions appeared in both

resultant sets. The number of overlapping results was usually not greater than two;



Ea
rly
bi
rd

Semantic-enabled hybrid genetic disease diagnostics in next-generation sequenced data 191

for one sample, the application returned divergent results. Table 4 presents detailed

information about the number of returned results for the analyzed samples.

Table 4

Number of variants returned by Exomiser and OMIM Explorer for analyzed samples.

Sample ID Exomiser OMIM Explorer Overlapping variants

0 24 16 2

1 16 19 1

2 21 12 1

3 22 15 0

4 25 14 2

5 24 19 2

6 30 15 1

7 30 14 1

8 21 13 1

Each of the resultant variants was provided to the semantic text analysis tool in

order to retrieve the related PubMed articles. The retrieval was performed according

to three patterns: with the variant name only, with the variant name and one or more

of the patient’s phenotype terms, or with the variant name and all of the phenotype

terms. Table 5 presents the average and medium numbers of returned articles for

each sample based on the set of variants outputted by Exomiser and OMIM Explorer.

The calculation was created taking into account the numbers of articles found in the

PubMed and PubMed Central databases for each variant (returned by Exomiser or

OE) for each sample.

Table 5

Average and median number of PubMed articles returned by HGD from Exomiser and OMIM

Explorer resultant variants

ID Exomiser OMIM Explorer
Variant Variant and Variant and Variant Variant and Variant and
only any HPO all HPO only any HPO all HPO

Avg Med Avg Med Avg Med Avg Med Avg Med Avg Med

0 497 365 10 4 2 0 3433 314 77 12 7 2

1 1591 485 29 4 2 1 926 312 39 20 6 2

2 1183 419 18 7 2 1 911 582 62 27 8 2

3 1114 290 18 4 2 0 535 171 51 23 7 2

4 740 317 20 5 3 1 1383 496 112 36 19 5

5 2367 338 38 5 3 0 946 299 33 17 3 1

6 408 249 7 3 0 0 1772 255 61 19 11 3

7 652 276 18 4 3 0 789 386 62 32 11 3

8 381 145 8 2 1 0 1147 898 74 36 12 2

The more accurate the query returns, the smaller the number of articles. Ad-

ding phenotype requirements to the computation decreased the number of returned
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results. Some cases showed a surprisingly large number of returned articles, even with

precise queries. This was usually caused by the fact that the genetic variant name

was the same as that of another medical term, which increased the result set. The

analysis that required the presence of the variant name and all pathogenic terms in

the article returned the smallest number of PubMed articles. In this analysis pattern,

the majority of the cases had fewer than five related papers. Only about 20% of

the variants provided by Exomiser (Figure 1) for a chosen sample and about 30% in

OMIM Explorer (Figure 2) had five or more articles found in PubMed, which may

indicate that they could be analyzed first in the diagnostic process.
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70%
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100%
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Figure 1. Relationship of number of PubMed articles returned by HGD analysis with variant

and all phenotype terms for Exomiser resultant variants.

A similar operation was performed with the Google Scholar repository. As was

expected, Google Scholar returned many more articles than our HGD semantic search

module. The average and median calculations of the article numbers for the analyzed

samples are presented in Table 6.

The differences between the number of found articles by the search tools are quite

large. Google Scholar searches for a given expression in a wide variety of sources, not

only among openly available articles but also in scientific journals where a subscription

is necessary. Besides that, Google Scholar uses a mechanism that improves searching

by looking for similar-looking words, which is not always desirable in the case of

genetic variant names because it generates a lot of article suggestions that are not

related to the searched subjects. Google Scholar searches more than just medical

journals, which also contributes to the increase in the number of suggested articles.

After combining the Exomiser and OMIM Explorer results with the articles returned
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Figure 2. Relationship of number of PubMed articles returned by HGD analysis with variant

and all phenotype terms for OMIM Explorer resultant variants.

Table 6

Average and median number of PubMed articles returned by HGD semantic search mecha-

nism from Exomiser and OMIM Explorer resultant variants.

ID Exomiser OMIM Explorer
Variant Variant and Variant and Variant Variant and Variant and
only any HPO all HPO only any HPO all HPO

Avg Med Avg Med Avg Med Avg Med Avg Med Avg Med

0 41707 5370 1677 81 1301 12 692694 4595 5774 216 1609 54

1 169751 6255 1850 254 1464 43 78622 5510 1858 413 1947 95

2 95970 7010 1031 130 1345 40 98434 6085 2383 422 1552 108

3 52511 7125 1305 76 1001 19 49284 2130 2038 413 1250 120

4 25056 5140 433 133 1925 40 136539 6105 3707 437 1800 180

5 152441 4600 1253 89 186 17 15184 4780 705 303 536 95

6 53116 5510 354 75 1247 17 241357 6370 1323 467 1965 125

7 12184 5700 673 80 535 18 99423 4415 758 349 364 74

8 71355 2270 582 60 836 8 202310 6020 3294 543 3534 157

by HGD and GoogleScholar, it is noticeable that the variants present in both variant

prioritization tool’s result sets have quite a large number of returned articles. The

numbers are usually above the medians presented in Tables 5 and 6. This indicates

that the known and well-studied variants were proposed by the tool. For each analyzed

sample, the variants present in both the OMIM Explorer and Exomiser resultant sets

were provided to semantic search tools (HGD and Google Scholar) with a patient’s

phenotype terms. As the input for the search, two approaches were chosen: variant
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name with all phenotype terms required and variant name with at least one of the

provided phenotype words required. The results are presented in Table 7.

Table 7

Number of articles found by HGD and GoogleScholar for variants present in OE and Exomiser

result sets for provided samples.

SampleID Variant HGD GoogleScholar

name Variant and Variant and Variant and Variant and

any HPO all HPO any HPO all HPO

0 WFS1 76 14 677 211

PLIN1 13 4 159 40

1 CDKN1C 51 7 625 164

2 CYP21A2 16 1 409 125

3 - - - - -

4 ABCC8 211 45 2200 1370

GNAS 41 4 543 157

5 ALMS1 31 7 303 75

CPT2 58 5 761 242

6 MC2R 33 2 563 133

7 ABCC8 211 45 2200 1370

8 GNAS 41 4 543 157

Figure 3. Numbers of articles returned by Google Scholar and HGD for one variant and at

least one phenotype term.

The strategy where the doctor searches for the pathogenic variant name and

at least one of the phenotype terms is the most likely one. Therefore, this case is

presented in Figure 3. The median number of articles found for one variant in the OR

strategy by Google Scholar is 137, but half of the results are numbers between 45 and

622. Reading and manually analyzing all of the available articles might be difficult.
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As its repository is much smaller, HGD returns a median number of 7 articles, but the

values of the first and third quartiles are 2 and 22, respectively. Reading or inspecting

such a number of articles is time-consuming. If the doctor decides to verify all of the

variants returned by the algorithms, the presented numbers need to be multiplied by

the median number of returned variants by Exomiser and OMIM Explorer (which

is 39). The overall number of articles found by the geneticist in GoogleScholar will

exceed a thousand. HGD will return about 300 or more articles; thus, a manual

analysis of such a large number of papers is not possible. A strategy for prioritizing,

filtering, and choosing valuable articles is required. The results of the experiment

show that the proper filtering strategy for variant prioritization can bring a great

reduction in the number of potentially causal variants. The diagnosis is mostly made

based on the doctor’s experience and knowledge, but the information and discoveries

delineated in the scientific articles is also important. An analysis of the scientific

articles is important. Due to the large number of sources, the fast development and

increased research in the area of a manual analysis of every potentially valuable paper

might be difficult.

The research on the HGD tool presented in this article is a strategy that is going

to be developed. The solution requires additional medical and technical analyses with

diagnosed samples. Currently, the analyzed samples require final medical diagnosis,

which will also verify the HGD application approach and review the idea of variant

scoring. The performed experiments revealed a number of challenges to meet in

further HGD research. Including ExomiserScore and OMIM Explorer, the calculated

measures will improve the calculation of most highly pathogenic variants, especially

for those samples where the results returned by Exomiser and OE do not have common

values. A semantic search performed by HGD requires us to include scientific article

publication dates into the scoring. The solution should also exclude the articles that

are not from the genetic field and are presented in the result list because of the

similarity between medical terms.
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