PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and computational approaches to the evaluation of double corrugated arch structures. A review of the latest advancements

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Doświadczalne i obliczeniowe podejście do oceny struktur łukowych z blach podwójnie giętych. Przegląd najnowszych osiągnięć
Języki publikacji
EN
Abstrakty
EN
Double corrugated, self-supporting K-span arch structures are now commonly used globally to make roofs for building structures, as an alternative to traditional solutions. The K-span system has become popular mainly due to the simple and cheap method of its manufacturing and quick installation. Nowadays, new versions of the system are created but still there is no valid design method. Design difficulties are among the causes of failures or even collapses of such structures. Back in the 1970s, the first studies were developed concerning computational analyses of double corrugated arch roofs. They laid grounds for the development of contemporary K-span system technology but have since lost their practical advantages due to changing engineering conditions. The paper presents a review of research and computational methods concerning double corrugated arch structures. The paper discusses selected scientific studies, which were used as the basis for the development of research and computational methods, and their contemporary continuation. Directions for further research and analyses are also presented which could contribute to the future development of science and engineering in the area and could provide inspiration for future studies.
PL
Podwójnie gięte, samonośne struktury łukowe systemu K-span, stosowane są obecnie na runku światowym do wykonywania zadaszeń obiektów budowlanych jako alternatywna technologia w odniesieniu do tradycyjnych rozwiązań. System konstrukcyjny K-span zyskał popularność głównie z powodu prostej i taniej metody wytwarzania oraz szybkiego montażu. Obecnie powstają nowe odmiany tego sytemu, jednak nadal brak jest odpowiedniego sposobu projektowania. Trudności w projektowaniu są jedną z przyczyn awarii a nawet katastrof tego typu struktur. W latach osiemdziesiątych ubiegłego stulecia powstały pierwsze opracowania studialne dotyczące analiz badawczych i obliczeniowych zadaszeń łukowych z blach podwójnie giętych. Stanowiły one podstawy rozwoju dzisiejszej technologii systemu K-span, jednak straciły walory praktyczne z uwagi na zmieniające się uwarunkowania techniczne. Artykuł stanowi przegląd rozwoju technik badawczych i obliczeniowych dotyczących struktur łukowych z blach podwójnie giętych. W artykule przedstawiono wybrane prace naukowe, które były podstawą rozwoju technik badawczych i metod obliczeniowych a także ich współczesną kontynuację.
Twórcy
  • Building Research Institute (Instytut Techniki Budowlanej), Warsaw, Poland
  • Building Research Institute (Instytut Techniki Budowlanej), Warsaw, Poland
  • Building Research Institute (Instytut Techniki Budowlanej), Warsaw, Poland
  • Silesian University of Technology, Faculty of Civil Engineering, Gliwice, Poland
Bibliografia
  • [1] J. Decker, C. Chiei, Quonset Hut, Princeton Archit.Press, New York, NY, 2005. https://doi.org/10.1007/1-56898-654-8
  • [2] J.S. Garnetr, World War II Temporary Military Buildings: A Brief History of the Architecture and Planning of Cantonments and Training Stations in the United States., Virginia, 1993
  • [3] K.L. Draper, Wartime Huts: The Development, Typology and Identification of Temporary Military Buildings in Britain 1914-1945, University of Cambridge, 2017
  • [4] H.A. Mang, Analysis of Double Corrugated Shell Structures by the Finite Element Method, Texas Tech University, 1974
  • [5] H.A. Mang, “Finite element analysis of doubly corrugated shells”, Journal of the Structural Division, no. 102, pp.2033-2051, 1976. http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0006980 (accessed January 24, 2018)
  • [6] J.B. Richman, “K-span-consulting” n.d. http://k-span-consulting.com (accessed March 28, 2017)
  • [7] European Committee for Standardisation, EN 1993-1-1: Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings, 2005
  • [8] European Committee for Standardisation, EN 1993-1-3: Eurocode 3: Design of steel structures - Part 1-3: General rules - Supplementary rules for cold-formed members and sheeting, 2006
  • [9] European Committee for Standardisation, EN 1993-1-5: Eurocode 3: Design of steel structures - Part 1-5: General rules - Plated structural elements, 2006
  • [10] European Committee for Standardisation, EN 1993-1-6: Eurocode 3: Design of steel structures - Part 1-6: Strength and stability of shell structures, 2007
  • [11] A. Biegus, A. Kowal, “Collapse of halls made from cold-formed steel sheets”, Engineering Failure Analysis, no. 31, pp.189-194, Jul. 2013. https://doi.org/10.1016/j.engfailanal.2012.12.009
  • [12] P. Rindos, “V Starej Ľubovni sa zrútila strecha zimného štadióna”, Denník SME, n.d. https://spis.korzar.sme.sk/c/6696874/v-starej-lubovni-sa-zrutila-strecha-zimneho-stadiona.html (accessed December 8, 2017)
  • [13] J. Pustayová, “Spadnutá strecha štadióna: Príčina je už známa”, PLUS Jeden Deň, n.d. http://www.pluska.sk/regiony/stredne-slovensko/spadnuta-strecha-stadiona-pricina-je-znama.html (accessed December 8, 2017)
  • [14] А. Загуменская, “Руководство парка Южно-Сахалинска ищет причины обрушения крыши ангара (in Russian)”, Губернские Ведомости, 2018. https://skr.su/news/post/105972/ (accessed November 24, 2020)
  • [15] V. Amghel, S. Sorohan, N. Constatnin, I. Stolica, On the analysis on a cold formed steel profile arch structure, in: Acta Electroteh., 2016
  • [16] A. Piekarczuk, “Test-supported numerical analysis for evaluation of the load capacity of thin-walled corrugated profiles”, Bulletin of the Polish Academy of Sciences Technical Sciences, no. 65, Jan. 2017. https://doi.org/10.1515/bpasts-2017-0087
  • [17] R. Walentyński, R. Cybulski, K.J. Kozieł, Achilles’ heel of the ABM 120 double corrugated profiles, in: New Trends Statics Dyn. Build. Slovakia Univ. Technol. Bratislava, Faculty of Civil Engineering STU Bratislava Slovak Society of Mechanics SA, 2011: pp. 25-28
  • [18] S. Sweeney, D. Briassoulis, A. Kao, AD-A231 699. Evaluation of K-Span as a Rapidly Erectable Lightweight Mobilization Structure (RELMS), 1991. http://www.dtic.mil/docs/citations/ADA231699 (accessed July 10, 2018)
  • [19] D. Briassoulis, A. Kao, S. Sweeney, AD-A187 716. Determination of the Ultimate Loads for Corrugated-Steel, Barrel-Type Shell Structures., 1987. http://www.dtic.mil/docs/citations/ADA187716 (accessed July 10, 2018)
  • [20] K.L. Roye, Metal building construction using the MIC-240 ABM K-Span machine, Monterey, California, USA, 1996. http://www.dtic.mil/docs/citations/ADA322031 (accessed July 10, 2018)
  • [21] M.J. Yagodich, Numerical Evaluation of Thin-Shelled Structural Panels - D-Scholarship@Pitt, University of Pittsburgh, 2003. http://d-scholarship.pitt.edu/6977/ (accessed April 10, 2018)
  • [22] D. Zhadanov, V. Ulascvich, I. Zinkevich, “Experimental Testing of an Arched Roofing Panel Made of MIC-120 Thin-walled Cold-formed Steel Profiles with Transverse Corrugations”, СТРОИТЕЛЬСТВО. ПРИКЛАДНЫЕ НАУКИ. Строительные Конструкции, pp.33-38, 2015
  • [23] E. Airumyan, O. Boyko, Full-Scale Testing and Design of Frameless Arch Steel Roof, in: K. Virdi, F. Raras, J. Clarke, G. Armer (Eds.), Struct. Assessment. Role Large Full Scale Test., E & FN Spon, 1997: pp. 211-217
  • [24] L. Wu, X. Gao, Y. Shi, Y. Wang, “Theoretical and experimental study on interactive local buckling of archshaped corrugated steel roof”, Steel Structures, no. 6, pp.45-54, 2006
  • [25] L. Xu, Y. Gong, P. Guo, “Compressive tests of cold-formed steel curved panels”, Journal of Constructional Steel Research, no. 57, pp.1249-1265, Dec. 2001. https://doi.org/10.1016/S0143-974X(01)00048-7
  • [26] J. Zaraś, K. (Katarzyna) Kowal-Michalska, J. Rhodes, A simplified Computation Model of Arch-Shaped Corrugated Shell Roof, in: Thin-Walled Struct. Adv. Dev. Third Int. Conf. Thin-Walled Struct., Elsevier, 2001: pp. 109-118
  • [27] A. Piekarczuk, M. Malesa, M. Kujawinska, K. Malowany, “Application of Hybrid FEM-DIC Method for Assessment of Low Cost Building Structures”, Experimental Mechanics, 2012. https://doi.org/10.1007/s11340-012-9616-2
  • [28] European Committee for Standardisation, EN 1991-1-3: Eurocode 1: Actions on structures - Part 1-3: General actions - Snow loads, 2003
  • [29] F. Chen, X. Chen, X. Xie, X. Feng, L. Yang, “Full-field 3D measurement using multi-camera digital image correlation system”, Optics and Lasers in Engineering, no. 51, pp.1044-1052, Sep. 2013. https://doi.org/10.1016/j.optlaseng.2013.03.001
  • [30] M. Malesa, K. Malowany, U. Tomczak, B. Siwek, M. Kujawińska, A. Siemińska-Lewandowska, “Application of 3D digital image correlation in maintenance and process control in industry”, Computers in Industry, no. 64, pp.1301-1315, Dec. 2013. https://doi.org/10.1016/j.compind.2013.03.012
  • [31] H. Schreier, J.-J. Orteu, M.A. Sutton, Image Correlation for Shape, Motion and Deformation Measurements, Springer US, Boston, MA, 2009. https://doi.org/10.1007/978-0-387-78747-3
  • [32] W.H. Peters, W.F. Ranson, “Digital Imaging Techniques In Experimental Stress Analysis”, Optical Engineering, no. 21, Jun. 1982. https://doi.org/10.1117/12.7972925
  • [33] B. Pan, “Bias error reduction of digital image correlation using Gaussian pre-fiItering”, Optics and Lasers in Engineering, no. 51, pp.1-7, 2013. https://doi.org/10.1016/j.optlaseng.2013.04.009
  • [34] B. Pan, H. Xie, Z. Wang, K. Qian, Z. Wang, “Study on subset size selection in digital image correlation for speckle patterns”. Optics Express, no. 16, pp.7037-7048, 2008. https://doi.org/10.1364/OE.16.007037
  • [35] Y. Zhou, C. Sun, Y. Song, J. Chen, “Image pre-filtering for measurement error reduction in digital image correlation”, Optics and Lasers in Engineering, no. 65, pp.46-56, 2015. https://doi.org/10.1016/j.optlaseng.2014.04.018
  • [36] B. Pan, K. Li, W. Tong, “Fast, Robust and Accurate Digital Image Correlation Calculation Without Redundant Computations”, Experimental Mechanics, no. 53, pp.1277-1289, 2013. https://doi.org/10.1007/s11340-013- 9717-6
  • [37] M.A. Sutton, J.H. Yan, V. Tiwari, H.W. Schreier, J.J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements”, Optics and Lasers in Engineering, no. 46, pp.746-757, Oct. 2008. https://doi.org/10.1016/j.optlaseng.2008.05.005
  • [38] H.W. Schreier, “Systematic errors in digital image correlation caused by intensity interpolation”, Optical Engineering, no. 39, pp.2915, Nov. 2000. https://doi.org/10.1117/1.1314593
  • [39] P. Lava, S. Cooreman, S. Coppieters, M. De Strycker, D. Debruyne, “Assessment of measuring errors in DIC using deformation fields generated by plastic FEA”, Optics and Lasers in Engineering, no. 47, pp.747-753, Jul. 2009. https://doi.org/10.1016/j.optlaseng.2009.03.007
  • [40] M. Bornert, F. Brémand, P. Doumalin, J.C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J.J. Orteu, L. Robert, Y. Surrel, P. Vacher, B. Wattrisse, “Assessment of digital image correlation measurement errors: Methodology and results”, Experimental Mechanics, no. 49, pp.353-370, 2009. https://doi.org/10.1007/s11340-008-9204-7
  • [41] R. Balcaen, L. Wittevrongel, P.L. Reu, P. Lava, D. Debruyne, “Stereo-DIC Calibration and Speckle Image Generator Based on FE Formulations”, Experimental Mechanics, no. 57, pp.703-718, Jun. 2017. https://doi.org/10.1007/s11340-017-0259-1
  • [42] Z. Tang, J. Liang, Z. Xiao, C. Guo, “Large deformation measurement scheme for 3D digital image correlation method”, Optics and Lasers in Engineering, no. 50, pp.122-130, Feb. 2012. https://doi.org/10.1016/j.optlaseng.2011.09.018
  • [43] M. Kujawinska, M. Malesa, K. Malowany, A. Piekarczuk, L. Tymińska-Widmer, P. Targowski, Digital image correlation method: a versatile tool for engineering and art structures investigations, in: R. Rodríguez-Vera, R. Díaz-Uribe (Eds.), 22nd Congr. Int. Comm. Opt. Light Dev. World, Aug. 2011: p. 80119R. https://doi.org/10.1117/12.915566
  • [44] M. Malesa, K. Malowany, J. Pawlicki, M. Kujawinska, P. Skrzypczak, A. Piekarczuk, T. Lusa, A. Zagorski, “Non-destructive testing of industrial structures with the use of multi-camera Digital Image Correlation method”, Engineering Failure Analysis, no. 69, pp.122-134, Nov. 2016. https://doi.org/10.1016/j.engfailanal.2016.02.002
  • [45] H.A. Bruck, S.R. McNeill, M.A. Sutton, W.H. Peters, “Digital image correlation using Newton-Raphson method of partial differential correction”, Experimental Mechanics, no. 29, pp.261-267, Sep. 1989. https://doi.org/10.1007/BF02321405
  • [46] A. Piekarczuk, “Experimental and numerical studies of double corrugated steel arch panels”, Thin-Walled Structures, no. 140, pp.60-73, Jul. 2019. https://doi.org/10.1016/j.tws.2019.03.032
  • [47] X.P. Wang, C.R. Jiang, G.Q. Li, S.Y. Wang, “Full-scale tests and finite element analysis of arched corrugated steel roof under static loads”, Steel and Composite Structures, no. 7, pp.339-354, Aug. 2007. https://doi.org/10.12989/scs.2007.7.4.339
  • [48] L.T. Sun, L.S. Lin, “Equivalent Analysis of Elastic Constants and Stability Calculation of Corrugated-Arch Metal Roof”, Advanced Materials Research, no. 542-543, pp.106-110, Jun. 2012. https://doi.org/10.4028/www.scientific.net/amr.542-543.106
  • [49] A. Piekarczuk, K. Malowany, P. Więch, M. Kujawińska, P. Sulik, “Stability and bearing capacity of archshaped corrugated shell elements: experimental and numerical study”, Bulletin of the Polish Academy of Sciences Technical Sciences, no. 63, pp.113-123, Jan. 2015. https://doi.org/10.1515/bpasts-2015-0013
  • [50] A. Piekarczuk, K. Malowany, “Comparative analysis of numerical models of arch-shaped steel sheet sections”, Archives of Civil and Mechanical Engineering, no. 16, pp.645-658, Sep. 2016. https://doi.org/10.1016/j.acme.2016.04.006
  • [51] A. Piekarczuk, P. Więch, R. Cybulski, “Experimental method to evaluate the load-carrying capacity of double corrugated sheet profiles”, Thin-Walled Structures, no. 144, pp.106283, Nov. 2019. https://doi.org/10.1016/j.tws.2019.106283
  • [52] R. Cybulski, R. Walentyński, M. Cybulska, “Local buckling of cold-formed elements used in arched building with geometrical imperfections”, Journal of Constructional Steel Research, no. 96, pp.1-13, May 2014. https://doi.org/10.1016/j.jcsr.2014.01.004
  • [53] R. Cybulski, Analysis of local stability of doubly corrugated thin-walled structures, Silesian University of Technology. Poland, 2015
  • [54] R.S. Crespo, Linear Stability Analysis of Double Corrugated 120 ABM Steel Arch Panels, Silesian University of Technology. Poland, 2012
  • [55] A. Piekarczuk, Experimental and computational evaluation methods of arch-shaped roof made of double corrugated shells (In Polish), Instytut Techniki Budowlanej, Warsaw, 2018
  • [56] Y.L. Pi, M.A. Bradford, F. Tin-Loi, “Nonlinear analysis and buckling of elastically supported circular shallow arches”, International Journal of Solids and Structures, no. 44, pp.2401-2425, Apr. 2007. https://doi.org/10.1016/j.ijsolstr.2006.07.011
  • [57] Y.L. Pi, M.A. Bradford, “Non-linear in-plane postbuckling of arches with rotational end restraints under uniform radial loading”, International Journal of Non-Linear Mechanics, no. 44, pp.975-989, Nov. 2009. https://doi.org/10.1016/j.ijnonlinmec.2009.07.003
  • [58] Y.-L. Pi, M.A. Bradford, “Lateral-Torsional Buckling Analysis of Arches Having In-Plane Rotational End Restraints under Uniform Radial Loading”, Journal of Engineering Mechanics, no. 139, pp.1602-1609, Nov. 2013. https://doi.org/10.1061/(asce)em.1943-7889.0000599
  • [59] Q. Han, Y. Cheng, Y. Lu, T. Li, P. Lu, “Nonlinear buckling analysis of shallow arches with elastic horizontal supports”, Thin-Walled Structures, no. 109, pp.88-102, Dec. 2016. https://doi.org/10.1016/j.tws.2016.09.016
  • [60] Y. Lu, Y. Cheng, Q. Han, “Experimental investigation into the in-plane buckling and ultimate resistance of circular steel arches with elastic horizontal and rotational end restraints”, Thin-Walled Structures, no. 118, pp.164-180, Sep. 2017. https://doi.org/10.1016/J.TWS.2017.05.010
  • [61] Y. Zhou, Z. Yi, I. Stanciulescu, “Nonlinear Buckling and Postbuckling of Shallow Arches With Vertical Elastic Supports”, Journal of Applied Mechanics, no. 86, Jun. 2019. https://doi.org/10.1115/1.4042572
  • [62] X. Gao, L. Wu, H. Zhu, “Interactive local buckling analysis of corrugated plate assemblies of channel sections under uniform compression”, Journal of Building Structures, no. 26, pp.39-44, 2005
  • [63] L. Bruno, M. Sassone, F. Venuti, “Effects of the Equivalent Geometric Nodal Imperfections on the stability of single layer grid shells”, Engineering Structures, no. 112, pp.184-199, Apr. 2016. https://doi.org/10.1016/j.engstruct.2016.01.017
  • [64] J.L. Morais, F.M.A. Silva, “Influence of modal coupling and geometrical imperfections on the nonlinear buckling of cylindrical panels under static axial load”, Engineering Structures, no. 183, pp.816-829, Mar. 2019. https://doi.org/10.1016/j.engstruct.2018.12.032
  • [65] J. Shen, M.A. Wadee, “Sensitivity of elastic thin-walled rectangular hollow section struts to manufacturing tolerance level imperfections”, Engineering Structures, no. 170, pp.146-166, Sep. 2018. https://doi.org/10.1016/j.engstruct.2018.05.045
  • [66] X.Z. Cui, Y.G. Li, H.P. Hong, “Reliability of stability of single-layer latticed shells with spatially correlated initial geometric imperfection modeled using conditional autoregressive model”, Engineering Structures, no. 201, pp.109787, Dec. 2019. https://doi.org/10.1016/j.engstruct.2019.109787
  • [67] Z.L. Du, Z.X. Ding, Y.P. Liu, S.L. Chan, “Advanced flexibility-based beam-column element allowing for shear deformation and initial imperfection for direct analysis”, Engineering Structures, no. 199, pp.109586, Nov. 2019. https://doi.org/10.1016/j.engstruct.2019.109586
  • [68] Z.C. Fasoulakis, X.A. Lignos, T.P. Avraam, S.P. Katsatsidis, “Investigation on single-bolted cold-formed steel angles with geometric imperfections under compression”, Journal of Constructional Steel Research, no. 162, pp.105733, Nov. 2019. https://doi.org/10.1016/j.jcsr.2019.105733
  • [69] A. Beyer, N. Boissonnade, A. Khelil, A. Bureau, “Influence of assumed geometric and material imperfections on the numerically determined ultimate resistance of hot-rolled U-shaped steel members”, Journal of Constructional Steel Research, no. 147, pp.103-115, Aug. 2018. https://doi.org/10.1016/j.jcsr.2018.03.021
  • [70] Z. Sadovský, J. Kriváček, V. Ivančo, A. Ďuricová, “Computational modelling of geometric imperfections and buckling strength of cold-formed steel”, Journal of Constructional Steel Research, no. 78, pp.1-7, Nov. 2012. https://doi.org/10.1016/j.jcsr.2012.06.005
  • [71] J.M.F.. Holst, J.M. Rotter, C.R. Calladine, “Imperfections and buckling in cylindrical shells with consistent residual stresses”, Journal of Constructional Steel Research, no. 54, pp.265-282, May 2000. https://doi.org/10.1016/S0143-974X(99)00047-4
  • [72] J. Shen, M.A. Wadee, “Sensitivity to local imperfections in inelastic thin-walled rectangular hollow section struts”, Structures, no. 17, pp.43-57, 2019. https://doi.org/10.1016/j.istruc.2018.12.006
  • [73] F. Walport, L. Gardner, D.A. Nethercot, “Equivalent bow imperfections for use in design by second order inelastic analysis”, Structures, no. 26, pp.670-685, Aug. 2020. https://doi.org/10.1016/j.istruc.2020.03.065
  • [74] J. Sorić, “Imperfection sensitivity of internally-pressurized torispherical shells”, Thin-Walled Structures, no. 23, pp.57-66, Jan. 1995. https://doi.org/10.1016/0263-8231(95)00004-W
  • [75] Z. Lu, H. Obrecht, W. Wunderlich, “Imperfection sensitivity of elastic and elastic-plastic torispherical pressure vessel heads”, Thin-Walled Structures, no. 23, pp.21-39, Jan. 1995. https://doi.org/10.1016/0263-8231(95)94359-2
  • [76] C.K. Mak, K. Der-Wang, “Finite element analysis of buckling and post-buckling behaviors of arches with geometric imperfections”, Computers and Structures, no. 3, pp.149-161, Jan. 1973. https://doi.org/10.1016/0045-7949(73)90080-1
  • [77] Y. Zhou, W. Chang, I. Stanciulescu, “Non-linear stability and remote unconnected equilibria of shallow arches with asymmetric geometric imperfections”, International Journal of Non-Linear Mechanics, no. 77, pp.1-11, Dec. 2015. https://doi.org/10.1016/j.ijnonlinmec.2015.06.015
  • [78] P.C. Vales, M.C. Ribera, M.F. Ballester, F.M. Carvajal, “Compression behaviour of trapezoidal steel sheets with transverse corrugations”, Steel Construction, no. 12, pp.215-221, Aug. 2019. https://doi.org/10.1002/stco.201900017
  • [79] C.A. Dimopoulos, C.J. Gantes, “Nonlinear in-plane behavior of circular steel arches with hollow circular crosssection”, Journal of Constructional Steel Research, no. 64, pp.1436-1445, Dec. 2008. https://doi.org/10.1016/j.jcsr.2008.01.005
  • [80] D. Camotim, C. Basaglia, N. Silvestre, “GBT buckling analysis of thin-walled steel frames: A state-of-the-art report”, Thin-Walled Structures, no. 48, pp.726-43, Oct. 2010. https://doi.org/10.1016/j.tws.2009.12.003
  • [81] N. Silvestre, A.P.C. Duarte, J.P. Martins, L.S. da Silva, “GBT Buckling Analysis of Cylindrical Panels Under Compression”, Structures, no. 17, pp.34-42, Feb. 2019. https://doi.org/10.1016/j.istruc.2018.12.007
  • [82] A.D. Martins, N. Silvestre, “Modal analysis and imperfection sensitivity of the post-buckling behaviour of cylindrical steel panels under in-plane bending”, Engineering Structures, no. 207, pp.110127, Mar. 2020. https://doi.org/10.1016/j.engstruct.2019.110127
  • [83] V.K. Verma, “Thin-walled curved beams. I: Formulation of Nonlinear Equations”, Journal of Engineering Mechanics, no. 122, pp.483-483, May 1996. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:5(483)
  • [84] Y.J. Kang, C.H. Yoo, “Thin-walled curved beams. II: Analytical solutions for buckling of arches”, Journal of Engineering Mechanics, no. 120, pp.2102-2125, Oct. 1994. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:10(2102)
  • [85] H.R. Meyer-Piening, R. Anderegg, “Buckling and postbuckling investigations of imperfect curved stringerstiffened composite shells. Part A: Experimental investigation and effective width evaluation”, Thin-Walled Structures, no. 23, pp.323-338, Jan. 1995. https://doi.org/10.1016/0263-8231(95)94360-6
  • [86] M.A. Stiftinger, I.C. Skrna-Jakl, F.G. Rammerstorfer, “Buckling and postbuckling investigations of imperfect curved stringer-stiffened composite shells. Part B: Computational investigations”, Thin-Walled Structures, no. 23, pp.339-350, Jan. 1995. https://doi.org/10.1016/0263-8231(95)00021-5
  • [87] R.S. Srinivasan, L.S. Ramachandra, “Axisymmetric buckling and post-buckling of bimodulus annular plates”, Engineering Structures, no. 11, pp.195-198, Jul. 1989. https://doi.org/10.1016/0141-0296(89)90007-2
  • [88] A.F. Mateus, J.A. Witz, “Parametric study of the post-buckling behaviour of steel plates”, Engineering Structures, no. 23, pp.172-185, Feb. 2001. https://doi.org/10.1016/S0141-0296(00)00005-5
  • [89] L. Gardner, A. Fieber, L. Macorini, “Formulae for Calculating Elastic Local Buckling Stresses of Full Structural Cross-sections”, Structures, no. 17, pp.2-20, Feb. 2019. https://doi.org/10.1016/j.istruc.2019.01.012
  • [90] Y.-L.L. Pi, N.S.S. Trahair, “Non-linear buckling and postbuckling of elastic arches”, Engineering Structures, no. 20, pp.571-579, Jul. 1998. https://doi.org/10.1016/S0141-0296(97)00067-9
  • [91] M.A. Bradford, Y.L. Pi, G. Yang, X.C. Fan, “Effects of approximations on non-linear in-plane elastic buckling and postbuckling analyses of shallow parabolic arches”, Engineering Structures, no. 101, pp.58-67, Oct. 2015. https://doi.org/10.1016/j.engstruct.2015.07.008
  • [92] C.-F. Hu, Y.-M. Huang, “In-plane nonlinear elastic stability of pin-ended parabolic multi-span continuous arches”, Engineering Structures, no. 190, pp.435-446, Jul. 2019. https://doi.org/10.1016/j.engstruct.2019.04.013
  • [93] D. Kim, R.A. Chaudhuri, “Postbuckling behavior of symmetrically laminated thin shallow circular arches”, Composite Structures, no. 87, pp.101-108, Jan. 2009. https://doi.org/10.1016/j.compstruct.2008.01.005
  • [94] E.H. Boutyour, H. Zahrouni, M. Potier-Ferry, M. Boudi, “Asymptotic-numerical method for buckling analysis of shell structures with large rotations”, Journal of Computational and Applied Mathematics, no. 168, pp.77-85, Jul. 2004. https://doi.org/10.1016/J.CAM.2003.05.010
  • [95] A.D. Martins, N. Silvestre, “Modal analysis of the post-buckling behaviour of cylindrical steel panels under compression: Imperfection sensitivity and local2 interaction”, Thin-Walled Structures, no. 144, pp.106345, Nov. 2019. https://doi.org/10.1016/j.tws.2019.106345
  • [96] J. Zhu, M.M. Attard, D.C. Kellermann, “In-plane nonlinear buckling of circular arches including shear deformations”, Archive of Applied Mechanics, no. 84, pp.1841-1860, 2014. https://doi.org/10.1007/s00419-014-0890-6
  • [97] Y.L. Pi, M.A. Bradford, B. Uy, “In-plane stability of arches”, International Journal of Solids and Structures, no. 39, pp.105-125, Jan. 2001. https://doi.org/10.1016/S0020-7683(01)00209-8
  • [98] M.A. Bradford, B. Uy, Y.-L. Pi, “In-Plane Elastic Stability of Arches under a Central Concentrated Load”, Journal of Engineering Mechanics, no. 128, pp.710-719, Jul. 2002. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:7(710)
  • [99] H. Lu, A. Liu, Y.L. Pi, M.A. Bradford, J. Fu, Y. Huang, “Localized loading and nonlinear instability and postinstability of fixed arches”, Thin-Walled Structures, no. 131, pp.165-178, Oct. 2018. https://doi.org/10.1016/j.tws.2018.06.019
  • [100] M. Bateni, M.R.R. Eslami, “Non-linear in-plane stability analysis of FG circular shallow arches under uniform radial pressure”, Thin-Walled Structures, no. 94, pp.302-313, Sep. 2015. https://doi.org/10.1016/j.tws.2015.04.019
  • [101] S. Yan, X. Shen, Z. Jin, “Instability of imperfect non-uniform shallow arch under uniform radial pressure for pinned and fixed boundary conditions”, Thin-Walled Structures, no. 132, pp.217-236, Nov. 2018. https://doi.org/10.1016/j.tws.2018.08.018
  • [102] S. Jin, Z. Li, F. Huang, D. Gan, R. Cheng, G. Deng, “Constrained shell finite element method for elastic buckling analysis of thin-walled members”, Thin-Walled Structures, no. 145, pp.106409, Dec. 2019. https://doi.org/10.1016/J.TWS.2019.106409
  • [103] J.K. Paik, J.K. Seo, “Nonlinear finite element method models for ultimate strength analysis of steel stiffened-plate structures under combined biaxial compression and lateral pressure actions-Part II: Stiffened panels”, Thin-Walled Structures, no. 47, pp.998-1007, Aug. 2009. https://doi.org/10.1016/j.tws.2008.08.006
  • [104] S. Ádány, “Constrained shell Finite Element Method for thin-walled members, Part 1: constraints for a single band of finite elements”, Thin-Walled Structures, no. 128, pp.43-55, Jul. 2018. https://doi.org/10.1016/j.tws.2017.01.015
  • [105] S. Ádány, D. Visy, R. Nagy, “Constrained shell Finite Element Method, Part 2: application to linear buckling analysis of thin-walled members”, Thin-Walled Structures, no. 128, pp.56-70, Jul. 2018. https://doi.org/10.1016/j.tws.2017.01.022
  • [106] S. Ádány, “Modal identification of thin-walled members by using the constrained finite element method”, Thin-Walled Structures, no. 140, pp.31-42, Jul. 2019. https://doi.org/10.1016/j.tws.2019.03.029
  • [107] S. Ádány, “Shell element for constrained finite element analysis of thin-walled structural members”, Thin-Walled Structures, no. 105, pp.135-146, Aug. 2016. https://doi.org/10.1016/j.tws.2016.04.012
  • [108] M. Maali, A.C. Aydın, H. Showkati, M. Sağıroğlu, M. Kılıç, “The effect of longitudinal imperfections on thin-walled conical shells”, Journal of Building Engineering, no. 20, pp.424-441, Nov. 2018. https://doi.org/10.1016/j.jobe.2018.08.005
  • [109] A.T. Sarawit, Y. Kim, M.C.M. Bakker, T. Peköz, The finite element method for thin-walled members-applications, in: Thin-Walled Struct., Elsevier, Feb. 2003: pp. 191-206. https://doi.org/10.1016/S0263-8231(02)00087-3
  • [110] M.C.M. Bakker, T. Peköz, The finite element method for thin-walled members - Basic principles, in: Thin-Walled Struct., Elsevier, Feb. 2003: pp. 179-189. https://doi.org/10.1016/S0263-8231(02)00086-1
  • [111] V. Ungureanu, D. Dubina, “Recent research advances on ECBL approach. Part I: Plastic-elastic interactive buckling of cold-formed steel sections”, Thin-Walled Structures, no. 42, pp.177-194, Feb. 2004. https://doi.org/10.1016/S0263-8231(03)00056-9
  • [112] M. Kotełko, “Load-capacity estimation and collapse analysis of thin-walled beams and columns - Recent advances”, Thin-Walled Structures, no. 42, pp.153-175, Feb. 2004. https://doi.org/10.1016/S0263-8231(03)00055-7
  • [113] A. Teter, Z. Kolakowski, “Interactive buckling and load carrying capacity of thin-walled beam-columns with intermediate stiffeners”, Thin-Walled Structures, no. 42, pp.211-254, Feb. 2004. https://doi.org/10.1016/S0263-8231(03)00058-2
  • [114] P. Casariego, M. Casafont, M. Ferrer, F. Marimon, “Analytical study of flat and curved trapezoidal cold formed steel sheets by means of the yield line theory. Part 2: Curved sheets with transverse corrugations”, Thin-Walled Structures, no. 141, pp.693-712, Aug. 2019. https://doi.org/10.1016/j.tws.2018.12.018
  • [115] I.D. Thanasoulas, C.E. Douthe, C.J. Gantes, X.A. Lignos, “Influence of roller-bending on RHS steel arches: Experimental and numerical investigation”, Thin-Walled Structures, no. 131, pp.668-680, Oct. 2018. https://doi.org/10.1016/j.tws.2018.07.027
  • [116] W.M. Quach, J.G. Teng, K.F. Chung, “Finite element predictions of residual stresses in press-braked thin-walled steel sections”, Engineering Structures, no. 28, pp.1609-1619, Sep. 2006. https://doi.org/10.1016/j.engstruct.2006.02.013
  • [117] C.D. Moen, T. Igusa, B.W.W. Schafer, “Prediction of residual stresses and strains in cold-formed steel members”, Thin-Walled Structures, no. 46, pp.1274-1289, Nov. 2008. https://doi.org/10.1016/j.tws.2008.02.002
  • [118] W.M. Quach, J.G. Teng, K.F. Chung, “Residual stresses in steel sheets due to coiling and uncoiling: A closed-form analytical solution”, Engineering Structures, no. 26, pp.1249-1259, Jul. 2004. https://doi.org/10.1016/j.engstruct.2004.04.005
  • [119] S.H. Li, G. Zeng, Y.F. Ma, Y.J. Guo, X.M. Lai, “Residual stresses in roll-formed square hollow sections”, Thin-Walled Structures, no. 47, pp.505-513, May 2009. https://doi.org/10.1016/j.tws.2008.10.015
  • [120] Q. Han, Z. Han, Y. Lu, “Experimental and numerical investigations on residual stresses in hot-bent circular steel tube”, Journal of Constructional Steel Research, no. 161, pp.31-46, Oct. 2019. https://doi.org/10.1016/j.jcsr.2019.06.008
  • [121] D. Kollár, B. Kövesdi, “Welding simulation of corrugated web girders - Part 2: Effect of manufacturing on shear buckling resistance”, Thin-Walled Structures, no. 141, pp.477-488, Aug. 2019. https://doi.org/10.1016/j.tws.2019.04.035
  • [122] D. Kollár, B. Kövesdi, “Welding simulation of corrugated web girders - Part 1: Effect of manufacturing on residual stresses and imperfections”, Thin-Walled Structures, pp.106107, May 2019. https://doi.org/10.1016/j.tws.2019.04.006
  • [123] H. Amouzegar, B.W. Schafer, M. Tootkaboni, “An incremental numerical method for calculation of residual stresses and strains in cold-formed steel members”, Thin-Walled Structures, no. 106, pp.61-74, Sep. 2016. https://doi.org/10.1016/j.tws.2016.03.019
  • [124] Y. Yao, W.M. Quach, B. Young, “Finite element-based method for residual stresses and plastic strains in cold-formed steel hollow sections”, Engineering Structures, no. 188, pp.24-42, Jun. 2019. https://doi.org/10.1016/j.engstruct.2019.03.010
  • [125] W. Liu, K.J.R. Rasmussen, H. Zhang, “Modelling and probabilistic study of the residual stress of cold-formed hollow steel sections”, Engineering Structures, no. 150, pp.986-995, Nov. 2017. https://doi.org/10.1016/j.engstruct.2017.08.004
  • [126] M.M. Pastor, J. Bonada, F. Roure, M. Casafont, “Residual stresses and initial imperfections in non-linear analysis”, Engineering Structures, no. 46, pp.493-507, Jan. 2013. https://doi.org/10.1016/j.engstruct.2012.08.013
  • [127] A. Mutafi, N. Yidris, J. Loughlan, R. Zahari, M.R. Ishak, “Investigation into the distribution of residual stresses in pressed-braked thin-walled steel lipped channel sections using the 3D-FEM technique”, Thin-Walled Structures, no. 135, pp.437-445, Feb. 2019. https://doi.org/10.1016/j.tws.2018.11.003
  • [128] I.C. Noyan, J.B. Cohen, Residual Stress. Measurement by Diffraction and Interpretation, Springer-Verlag, New York, 2013
  • [129] M. Howes, T. Inoue, M. Park, Handbook of Residual Stress and Deformation of Steel, ASM International, 2002.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5908854-a20f-4710-b885-eff14a3710f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.