PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis and experimental trial of axial feed skew rolling for forming bars

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Axial feed skew rolling (AFSR) is a novel flexible forming process suitable for the production of multi-specification and small-batch bars. This work presents a systematic investigation of AFSR process via numerical analysis and experimental method. The finite-element (FE) simulation was conducted to analyze the distributions of strain and stress, temperature evolution, axial feed motion, rolling force and torque. The results show that the stress state of the workpiece central in the deformation zone is compressive in radial direction and tensile in axial and tangential directions. During the whole process, the workpiece temperature remains in hot-rolling temperature range. The bite stage lasts less than 1 s, and the initial thrust required is about 3.17 kN (rolling from Ø 60 mm to Ø 40 mm). The axial sliding coefficient of workpiece is determined to be 0.63 via comprehensive analysis of simulation results and theoretical calculation. Moreover, based on the single-factor design, the effects of process parameters on axial feed velocity, rolling force, and torque were studied by FE simulation. The axial feed velocity, rolling force, and torque increase with increasing feeding angle and sizing length, but decrease with increasing forming angle. The experiments were performed on a newly designed rolling mill, and experimental results show consistency with FE simulation results. No central defects are observed, while there are surface helical grooves and end concave centers on the rolled piece. The diameter deviation of rolled piece is within ± 0.3 mm. The ultimate tensile strength (UTS) is increased by about 58 MPa.
Rocznik
Strony
art. no. e17, 2022
Opis fizyczny
Bibliogr. 20 poz., fot., rys., wykr.
Twórcy
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, No.30 Xueyuan Road, Haidian District, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, No.30 Xueyuan Road, Haidian District, Beijing 100083, China
  • Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, No.30 Xueyuan Road, Haidian District, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, No.30 Xueyuan Road, Haidian District, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, No.30 Xueyuan Road, Haidian District, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, No.30 Xueyuan Road, Haidian District, Beijing 100083, China
Bibliografia
  • 1. Gronostajski Z, Pater Z, Madej L, Gontarz A, Lisiecki L, Łukaszek-Sołek A, et al. Recent development trends in metal forming. Arch Civ Mech Eng. 2019;19:898–941. https://doi.org/10.1016/j.acme.2019.04.005.
  • 2. Spuzic S, Narayanan R, Kovacic Z, Arachchige DH, Abhary K. Roll pass design optimisation. Int J Adv Manuf Tech. 2017;91:999–1005. https://doi.org/10.1007/s00170-016-9424-4.
  • 3. Liu Q, Tian Y, Zhai JP, Tian L, Chen LS, Chen LQ. Prediction of surface wrinkle defect of welding wire steel ER70S-6 in hot bar rolling process using finite element method and experiments. Metals. 2020;10:1559. https://doi.org/10.3390/met10111559.
  • 4. Ibrahim HEA, Elnady MA. Diameter control of copper rod in hot rolling processes. J Chin Inst Eng. 2016;39:87–100. https://doi.org/10.1080/02533839.2015.1070691.
  • 5. Zhou JL, Pan CG, Lv B, Wang H. The study of forward slip model in round-oval-round bar rolling. Appl Mech Mater. 2012;192:8–13.
  • 6. Negodin DA, Galkin SP, Kharitonov EA, Karpov BV, Khar’kovskii DN, Dubovitskaya IA, et al. Testing of the technology of radial-shear rolling and predesigning selection of rolling minimills for the adaptable production of titanium rods with small cross sectionsunder the conditions of the “CHMP” JSC. Metallurgist. 2019;62:1133–43. https:// doi. org/ 10. 1007/s11015-019-00765-3.
  • 7. Skripalenko MM, Galkin SP, Sung HJ, Romantsev BA, Huy TB, Skripalenko MN, et al. Prediction of potential fracturing during radial-shear rolling of continuously cast copper billets by means of computer simulation. Metallurgist. 2019;62:849–56. https://doi.org/10.1007/s11015-019-00728-8.
  • 8. Sheremet’ev VA, Kudryashova AA, Dinh XT, Galkin SP, Prokoshkin SD, Brailovskii V. Advanced technology for preparing bar from medical grade Ti-Zr-Nb superelastic alloy based on combination of radial-shear rolling and rotary forging. Metallurgist. 2019;63:51–61. https://doi.org/10.1007/s11015-019-00793-z.
  • 9. Hardtmann (2012) Entwicklung des Axial-Vorschub-Querwalzens an der TU Dresden - ein historischer Überblick von Anfang der 1970-er Jahre bis heute (in German).
  • 10. Houska M (1999) Experiment and finite-element analysis of axial feed bar rolling (AVQ). Proc 6th ICPT 11:1523–1538.
  • 11. Xu CG, Ren GS, Liu MCP, GH,. Kinematics analysis of flexible axial feed rolling. Forg Stamp Technol. 2004. https://doi.org/10.3969/j.issn.1000-3940.2004.05.010 (in Chinese).
  • 12. Xu CG, Liu GH, Ren GS, Shen Z, Ma CP, Ren WW (2007) Finite element analysis of axial feed bar rolling. https://doi.org/10.1016/S1006-7191(08)60011-3 (in Chinese).
  • 13. Pater Z, Tomczak J, Lis K, Bulzak T, Shu XD. Forming of rail car axles in a CNC skew rolling mill. Arch Civ Mech Eng. 2020. https://doi.org/10.1007/s43452-020-00075-5.
  • 14. Pater Z, Tomczak J, Bulzak T. Problems of forming stepped axles and shafts in a 3-roller skew rolling mill. J Market Res. 2020;9:10434–46. https://doi.org/10.1016/j.jmrt.2020.07.062.
  • 15. Tomczak J, Pater Z, Bulzak T, Lis K, Kusiak T, Sumorek A, et al. Design and technological capabilities of a CNC skew rolling mill. Arch Civ Mech Eng. 2021;21:1–17. https://doi.org/10.1007/s43452-021-00205-7.
  • 16. Pater Z. FEM analysis of loads and torque in a skew rolling process for producing axisymmetric parts. Arch Metall Mater. 2017;62:85–90. https://doi.org/10.1515/amm-2017-0011.
  • 17. Yamane K, Shimoda K, Kuroda K, Kajikawa S, Kuboki T. A new ductile fracture criterion for skew rolling and its application to evaluate the effect of number of rolls. J Mater Process Tech. 2021;291: 116989. https:// doi. org/ 10. 1016/j. jmatp rotec. 2020.116989.
  • 18. Hayashi C, Yamakawa T. Influences of feed and cross angle on rotary forging effects and redundant shear deformations in rotary piercing process. ISIJ Int. 2007;37:146–52. https://doi.org/10.2355/isijinternational.37.146.
  • 19. Yang CP, Dong HB, Hu ZH. Micro-mechanism of central damage formation during cross wedge rolling. J Mater Process Tech. 2018;252:322–32. https://doi.org/10.1016/j.jmatprotec.2017.09.041.
  • 20. Yang CP, Zheng ZH, Hu ZH. Simulation and experimental study on the concavity of workpiece formed by cross wedge rolling without stub bar. Int J Adv Manuf Tech. 2018;95:707–17. https://doi.org/10.1007/s00170-017-1252-7.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c58e8b4f-9593-42b7-81ad-0b6e81960064
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.