PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shape optimization of road tunnel cross-section by simulated annealing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concerns shape optimization of a tunnel excavation cross-section. The study incorporates optimization procedure of the simulated annealing (SA). The form of a cost function derives from the energetic optimality condition, formulated in the authors’ previous papers. The utilized algorithm takes advantage of the optimization procedure already published by the authors. Unlike other approaches presented in literature, the one introduced in this paper takes into consideration a practical requirement of preserving fixed clearance gauge. Itasca Flac software is utilized in numerical examples. The optimal excavation shapes are determined for five different in situ stress ratios. This factor significantly affects the optimal topology of excavation. The resulting shapes are elongated in the direction of a principal stress greater value. Moreover, the obtained optimal shapes have smooth contours circumscribing the gauge.
Wydawca
Rocznik
Strony
47--52
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
  • Faculty of Civil Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Faculty of Civil Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] KAWA M., RÓŻAŃSKI A., SOBÓTKA M., A verification of shape optimization procedures of tunnel underground excavations, Górnictwo i Geoinżynieria, 2011, Book 2, 535–541, (in Polish).
  • [2] REN G., SMITH J.V., TANG J.W., XIE Y.M., Underground excavation shape optimization using an evolutionary procedure, Computers and Geotechnics, 2005, No. 32, 122–132.
  • [3] RÓŻAŃSKI A., SOBÓTKA M., A procedure of underground excavations shape optimization, Górnictwo i Geoinżynieria, 2009, Book 1, 519–529, (in Polish).
  • [4] SOBÓTKA M., ŁYDŻBA D., RÓŻAŃSKI A., Shape optimization of underground excavation by simulated annealing, Studia Geotechnica et Mechanica, 2013, 35(1), 209–218.
  • [5] NGUYEN T., GHABRAIE K., TRAN-CONG T., Simultaneous pattern and size optimisation of rock bolts for underground excavations, Computers and Geotechnics, 2015, 66, 264–277.
  • [6] SAŁUSTOWICZ A., Zarys mechaniki górotworu, Wydawnictwo Śląsk, Katowice, 1968.
  • [7] XIE Y.M., STEVEN G.P., A simple evolutionary procedure for structural optimization, Comput. Struct., 1993, No. 49(5), 885–896.
  • [8] XIE Y.M., STEVEN G.P., Evolutionary structural optimization, Springer, Berlin, 1997.
  • [9] KIRKPATRICK S., GELATT C., VECCHI M., Optimization by simulated annealing, Science, 1983, Vol. 220, No. 4598, 671–680.
  • [10] SONMEZ F.O., Shape optimization of 2D structures using simulated annealing, Computer Methods in Applied Mechanics and Engineering, 2007, 196, 35, 3279–3299.
  • [11] SOBÓTKA M., ŁYDŻBA D., Shape Optimization of Soil-steel Structure by Simulated Annealing, Procedia Engineering, 91, 304–309.
  • [12] RÓŻAŃSKI A., ŁYDŻBA D., JABŁOŃSKI P., Numerical study of the size of representative volume element for linear elasticity problem, Studia Geotechnica et Mechanica, 2013, 35(2), 67– 81.
  • [13] RÓŻAŃSKI A., ŁYDŻBA D., From digital image of microstructure to the size of representative volume element: B4C/Al composite, Studia Geotechnica et Mechanica, 2011, 33(1), 55–68.
  • [14] CHAPMAN D., METJE N., STÄRK A., Introduction to tunnel construction. 2010, Vol. 3. CRC Press.
  • [15] RABCEWICZ L.V., Bemessung von Hohlraumbauten, die “Neue Österreichische Bauweise” und ihr Einfluß auf Gebirgsdruckwirkungen und Dimensionierung, Felsmechanik und Ingenieurgeologie, 1963, 1, 3–4.
  • [16] SHIM P.Y., MANOOCHEHRI S., Generating optimal configurations in structural design using simulated annealing, International Journal for Numerical Methods in Engineering, 1997, 40(6), 1053–1069.
  • [17] METROPOLIS N. et.al., Equation of state calculation by fast computing machines, The Journal of Chemical Physics, 1953, Vol. 21, No. 6, 1087–1092.
  • [18] FLAC Fast Lagrangian Analysis of Continua, User’s Guide, Itasca Consulting Group Inc. Minneapolis, 2011.
  • [19] MAJCHERCZYK T., NIEDBALSKI Z., KOWALSKI M., 3D numerical modeling of road tunnel stability – The Laliki project, Archives of Mining Sciences, 2012, 57(1), 61–78.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c58af32a-b4c4-466a-8502-96d84386850c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.