PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the absorbing pervaporation technique for ammonia recovery after the haber process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel absorbing pervaporation hybrid technique has been evaluated experimentally for the recovery of ammonia from the gas mixture in a recycle loop of synthesis plants. This process of hybridization brings together the combination of energy-efficient membrane gas separation based on poly(dimethylsiloxane) poly(diphenylsilsesquioxane) with a high selective sorption technique where a water solution with polyethylene glycol 400 (PEG-400) was used as the liquid absorbent. Process efficiency was studied using the pure and mixed gases. The influence of PEG-400 content in aqueous solutions on process selectivity and separation efficiency was studied. The ammonia recovery efficiency evaluation of an absorbing pervaporation technique was performed and compared with the conventional membrane gas separation. It was shown that the absorbing pervaporation technique outperforms the conventional membrane method in the whole range of productivity, producing the ammonia with a purity of 99.93 vol.% using the PEG 80 wt.% solution. The proposed method may be considered as an attractive solution in the optimization of the Haber process.
Rocznik
Strony
323–--333
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • Laboratory of Membrane and Catalytic Processes, Nanotechnology and Biotechnology Department, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russia
  • Laboratory of Membrane and Catalytic Processes, Nanotechnology and Biotechnology Department, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russia
  • Laboratory of Membrane and Catalytic Processes, Nanotechnology and Biotechnology Department, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russia
  • Laboratory of Membrane and Catalytic Processes, Nanotechnology and Biotechnology Department, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russia
  • Laboratory of Membrane and Catalytic Processes, Nanotechnology and Biotechnology Department, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russia
  • Laboratory of Membrane and Catalytic Processes, Nanotechnology and Biotechnology Department, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russia
  • Laboratory of Membrane and Catalytic Processes, Nanotechnology and Biotechnology Department, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russia
Bibliografia
  • 1. Akhmetshina A.I., Gumerova O.R., Atlaskin A.A., Petukhov A.N., Sazanova T.S., Yanbikov N.R., Nyuchev A.V., Razov E.N., Vorotyntsev I.V., 2017. Permeability and selectivity of acid gases in supported conventional and novel imidazolium-based ionic liquid membranes. Sep. Purif. Technol., 176, 92–106. DOI: 10.1016/j.seppur.2016.11.074.
  • 2. Barrer R.M., Rideal E.K., 1939. Permeation, diffusion and solution of gases in organic polymers. Trans. Faraday Soc., 35, 628–643. DOI: 10.1039/tf9393500628.
  • 3. Bhown A., Cussler E.L., 1991. Mechanism for selective ammonia transport through Poly(vinylammonium thiocyanate) membrane. J. Am. Chem. Soc., 113, 742–749. DOI: 10.1021/ja00003a002.
  • 4. Davletbaeva I.M., Nurgaliyeva G.R., Akhmetshina A.I., Davletbaev R.S., Atlaskin A.A., Sazanova T.S., Efimov S.V., Klochkov V.V., Vorotyntsev I.V., 2016. Porous polyurethanes based on hyperbranched amino ethers of boric acid. RSC Adv., 6, 111109–111119. DOI: 10.1039/C6RA21638B.
  • 5. Daynes H.A., 1920. The process of diffusion through a rubber membrane. Proc. R. Soc. A, Math. Phys. Eng. Sci., 97, 286–307. DOI: 10.1098/rspa.1920.0034.
  • 6. He Y., Cussler E.L., 1992. Ammonia permeabilities of perfluorosulfonic membranes in various ionic forms. J. Membr. Sci., 68, 43–52. DOI: 10.1016/0376-7388(92)80148-D.
  • 7. Helminen J., Helenius J., Paatero E., Turunen I., 2000. Comparison of sorbents and isotherm models for NH3-gas separation by adsorption. AIChE J., 46, 1541–1555. DOI: 10.1002/aic.690460807.
  • 8. Karami M.R., Keshavarz P., Khorram M., Mehdipour M., 2013. Analysis of ammonia separation from purge gases in microporous hollow fiber membrane contactors. J. Hazard. Mater., 260, 576–584. DOI: 10.1016/j.jhazmat.2013.06.002.
  • 9. Makhloufi C., Belaissaoui B., Roizard D., Favre E., 2012. Interest of poly[bis(trifluoroethoxy)phosphazene] membranes for ammonia recovery–potential application in Haber process. Procedia Eng., 44, 143–146. DOI: 10.1016/j.proeng.2012.08.338.
  • 10. Pez G.P., Laciak D.V., 1988. Ammonia separation using semipermeable membranes. Air Products and Chemicals Inc. EP 0293737 B1.
  • 11. Timashev S.F., Vorobiev A.V., Kirichenko V.I., Popkov Y.M., Volkov V.I., Shifrina R.R., Lyapunov A.Y., Bondarenko A.G., Bobrova L.P., 1991. Specifics of highly selective ammonia transport through gas-separating membranes based on perfluorinated copolymer in the form of hollow fibers. J. Membr. Sci., 59, 117–131. DOI: 10.1016/S0376-7388(00)81178-3.
  • 12. Tricoli V., Cussler E.L., 1995. Ammonia selective hollow fibers. J. Membr. Sci., 104, 19–26. DOI: 10.1016/0376-7388(94)00208-G. Trubyanov M.M., Mochalov G.M., Vorotyntsev I.V., Vorotyntsev A.V., Suvorov S.S., Smirnov K.Y., Vorotyntsev
  • 13. V.M., 2016. An improved back-flush-to-vent gas chromatographic method for determination of trace permanent gases and carbon dioxide in ultra-high purity ammonia. J. Chromatogr. A., 1447, 129–134. DOI: 10.1016/j.chroma.2016.04.020.
  • 14. Varotto A., 2015. Enhanced catalytic performance for global ammonia production. Quantum Sphere Inc.
  • 15. Vorotyntsev I.V., Atlaskin A.A., Trubyanov M.M., Petukhov A.N., Gumerova O.R., Akhmetshina A.I., Vorotyntsev V.M., 2017. Towards the potential of absorbing pervaporation based on ionic liquids for gas mixture separation. Desalin. Water Treat., 75, 305–313. DOI: 10.5004/dwt.2017.20400.
  • 16. Vorotyntsev I.V., Drozdov P.N., Shablikin D.N., Gamajunova T.V., 2006. Ammonia separation and purification by absorbing pervaporation. Desalination, 200, 379–380. DOI: 10.1016/j.desal.2006.03.382.
  • 17. Vorotyntsev V.M., Drozdov P.N., Kolotilov E.Y., 2002. Gas mixtures separation by an absorbing pervaporation method. Desalination, 149, 23–27. DOI: 10.1016/S0011-9164(02)00686-0.
  • 18. Vorotyntsev V.M., Drozdov P.N., Vorotyntsev I.V., 2011. Mathematical modeling of the fine purification of gas mixtures by absorption pervaporation. Theor. Found. Chem. Eng., 45, 180–184. DOI: 10.1134/s0040579511020163.
  • 19. Vorotyntsev V.M., Drozdov P.N., Vorotyntsev I.V., Belyaev E.S., 2011. Deep gas cleaning of highly permeating impurities using a membrane module with a feed tank. Pet. Chem., 51, 595–600. DOI: 10.1134/S0965544111080111.
  • 20. Vorotyntsev V.M., Drozdov P.N., Vorotyntsev I.V., Smirnov K.Y., 2006. Germane high purification by membrane gas separation. Desalination, 200, 232–233. DOI: 10.1016/j.desal.2006.03.307.
  • 21. Vorotyntsev V.M., Mochalov G.M., Matveev A.K., Malyshev A.V., Vorotyntsev I.V., 2003. Determination of Trace impurities of H2, O2, Ar, N2, CO, CO2, and hydrocarbons in high-purity monosilane by gas chromatography. J. Anal. Chem., 58, 156–159. DOI: 10.1023/A:1022310222267.
  • 22. Vorotyntsev V.M., Mochalov G.M., Suvorov S.S., Shishkin A.O., 2010. Gas-chromatographic determination of the impurity composition of permanent gases, methane, carbon monooxide, and carbon dioxide in high-purity monogermane. J. Anal. Chem., 65, 634–639. DOI: 10.1134/S1061934810060146.
  • 23. Zhang J., Liu L., Huo T., Liu Z., Zhang T., Wei X., 2011. Absorption of dilute sulfur dioxide in aqueous polyethylene glycol 400 solutions at T = 308.15 K and p = 122.60 kPa. J. Chem. Thermodyn., 43, 1463–1467. DOI: 10.1016/J.JCT.2011.04.016.
  • 24. Zhang N., Zhang J., Zhang Y., Bai J., Wei X., 2013. Solubility and Henry’s law constant of sulfur dioxide in aqueous polyethylene glycol 300 solution at different temperatures and pressures. Fluid Phase Equilib., 348, 9–16. DOI: 10.1016/J.FLUID.2013.03.006.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c584aa31-4596-41af-9c54-34df30b683a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.