PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Intensification of photocatalytic hydrogen generation from glycerol under natural sunlight: Cocatalyst effects and solar applicability

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study focuses on intensifying photocatalytic hydrogen generation from glycerol under natural sunlight, examining the effects of cocatalysts and solar applicability. Cocatalysts are commonly employed to enhance the separation of photo-generated charges, while sacrificial agents suppress electron-hole recombination. Utilizing crude glycerol and solar light for photocatalytic hydrogen generation presents a promising avenue. The main objective was to enhance H2 production from a glycerol-containing solution by selecting parameters and scaling up the process using various reactor types and research systems. The study investigated the applicability of natural sunlight for photocatalytic H2 production and examined the influence of organic impurities on H2 production from synthetic and real crude glycerol. Scaling up the process intensified the rate of hydrogen generation, with the highest production achieved using TiO2 loaded with 0.5% Pt under visible light irradiation. It was concluded that H2 can be generated by reducing protons from both water and glycerol, the sacrificial agent. Glycerol and water, in the presence of photodeposited Pt or Pd on TiO2 and light, are converted to H2 through photocatalytic water-splitting and light-induced oxidation of glycerol. The successful application of photocatalysts under natural sunlight for hydrogen production was confirmed, highlighting the potential for sustainable and scalable green hydrogen generation.
Rocznik
Strony
art. no. e70
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Safety Engineering, Wolczanska 213, 90-924 Lodz, Poland
autor
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Molecular Engineering, Wolczanska 213, 90-924 Lodz, Poland
Bibliografia
  • 1. Bednarczyk K., Stelmachowski M., Gmurek M., 2018. The influence of process parameters on photocatalytic hydrogen production. Environ. Prog. Sustainable Energy, 38, 680–687. DOI: 10.1002/ep.12998.
  • 2. Borowska E., Gomes J.F., Martins R.C., Quinta-Ferreira R.M., Horn H., Gmurek M., 2019. Solar photocatalytic degradation of sulfamethoxazole by TiO2 modified with noble metals. Catalysts, 9, 500. DOI: 10.3390/catal9060500.
  • 3. Bowker M., Davies P.R., Al-Mazroai L.S., 2009. Photocatalytic reforming of glycerol over gold and palladium as an alternative fuel source. Catal. Lett., 128, 253–255. DOI: 10.1007/s10562-008-9781-1.
  • 4. Chen W.-T., Chan A., Sun-Waterhouse D., Llorca J., Idriss H., Waterhouse G.I.N., 2018. Performance comparison of Ni/TiO2 and Au/TiO2 photocatalysts for H2 production in different alcohol-water mixtures. J. Catal., 367, 27–42. DOI: 10.1016/j.jcat.2018.08.015.
  • 5. Chen W.-T., Dong Y., Yadav P., Aughterson R.D., Sun-Waterhouse D., Waterhouse G.I.N., 2020. Effect of alcohol sacrificial agent on the performance of Cu/TiO2 photocatalysts for UV-driven hydrogen production. Appl. Catal., A: Gen., 602, 117703. DOI: 10.1016/j.apcata.2020.117703.
  • 6. Cybula A., Priebe J.B., Pohl M.-M., Sobczak J.W., Schneider M., Zielińska-Jurek A., Brückner A., Zaleska A., 2014. The effect of calcination temperature on structure and photocatalytic properties of Au/Pd nanoparticles supported on TiO2. Appl. Catal., B, 152–153, 202–211. DOI: 10.1016/J.APCATB. 2014.01.042.
  • 7. Daskalaki V.M., Kondarides D.I., 2009. Efficient production of hydrogen by photo-induced reforming of glycerol at ambient conditions. Catal. Today, 144, 75–80. DOI: 10.1016/j.cattod.2008.11.009.
  • 8. Daskalaki V.M., Panagiotopoulou P., Kondarides D.I., 2011. Production of peroxide species in Pt/TiO2 suspensions under conditions of photocatalytic water splitting and glicerol photoreforming. Chem. Eng. J., 170, 433–439. DOI: 10.1016/j.cej.2010.11.093.
  • 9. Dean J.A., 1999. Lange’s Handbook of Chemistry. 15th ed., McGraw-Hill, New York, 3, 30.
  • 10. Fan W., Zhang Q., Wang Y., 2013. Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Phys. Chem. Chem. Phys., 15, 2632–2649. DOI: 10.1039/C2CP43524A.
  • 11. Fujishima A., Rao T.N., Tryk D.A., 2000. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev., 1, 1–21. DOI: 10.1016/S1389-5567(00)00002-2.
  • 12. Fujishima A., Zhang X., Tryk D.A., 2007. Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int. J. Hydrogen Energy, 32, 2664–2672. DOI: 10.1016/j.ijhydene.2006.09.009.
  • 13. Gmurek M., Gomes J.F., Martins R.C., Quinta-Ferreira R.M, 2019. Comparison of radical-driven technologies applied for paraben mixture degradation: mechanism, biodegradability, toxicity and cost assessment. Environ. Sci. Pollut. Res., 26, 37174–37192. DOI: 10.1007/s11356-019-06703-9.
  • 14. Gomathisankar P., Yamamoto D., Katsumata H., Suzuki T., Kaneco S., 2013. Photocatalytic hydrogen production with aid of simultaneous metal deposition using titanium dioxide from aqueous glucose solution. Int. J. Hydrogen Energy, 38, 5517– 5524. DOI: 10.1016/j.ijhydene.2013.03.014.
  • 15. Gombac V., Sordelli L., Montini T., Delgado J.J., Adamski A., Adami G., Cargnell M., Bernal S., Fornasiero P., 2010. CuOx – TiO2 Photocatalysts for H2 production from ethanol and glycerol solutions. J. Phys. Chem. A, 114, 3916–3925. DOI: 10.1021/jp907242q.
  • 16. Gomes J.F., Bednarczyk K., Gmurek M., Stelmachowski M., Zaleska-Medynska A., Bastos F.C., Quinta-Ferreira M.E., Costa R., Quinta-Ferreira R.M., Martins R.C., 2017. Noble metal–TiO2 supported catalysts for the catalytic ozonation of parabens mixtures. Process Saf. Environ. Prot., 111, 148–159. DOI: 10.1016/j.psep.2017.07.001.
  • 17. Grabowska E., Marchelek M., Paszkiewicz-Gawron M., Zaleska-Medynska A., 2018. 3 – Metal oxide photocatalysts, In: Zaleska-Medynska A. (Ed.), Metal oxide-based photocatalysis: Fundamentals and prospects for application. Elsevier, 51–209. DOI: 10.1016/B978-0-12-811634-0.00003-2.
  • 18. Greeley J., Jaramillo T.F., Bonde J., Chorkendorff I., Nørskov J.K., 2006. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater., 5, 909–913. DOI: 10.1038/nmat1752.
  • 19. Hainer A.S., Hodgins J.S., Sandre V., Vallieres M., Lanterna A.E., Scaiano J.C., 2018. Photocatalytic hydrogen generation using metal-decorated TiO2: sacrificial donors vs true water splitting. ACS Energy Lett., 3, 542–545. DOI: 10.1021/acsenergylett.8b00152.
  • 20. Ibhadon A., Fitzpatrick P., 2013. Heterogeneous photocatalysis: Recent advances and applications. Catalysts, 3, 189–218. DOI: 10.3390/catal3010189.
  • 21. Janczarek M., Kowalska E., 2017. On the origin of enhanced photocatalytic activity of copper-modified titania in the oxidativereaction systems. Catalysts, 7, 317. DOI: 10.3390/catal7110317.
  • 22. Jovic V., Chen W-.T., Sun-Waterhouse D., Blackford M.G., Idriss H., Waterhouse G.I.N., 2013. Effect of gold loading and TiO2 support composition on the activity of Au/TiO2 photocatalysts for H2 production from ethanol–water mixtures. J. Catal., 305, 307–317. DOI: 10.1016/j.jcat.2013.05.031.
  • 23. Kumar D.P., Lakshmana Reddy N., Karthik M., Neppolian B., Madhavan J., Shankar M.V., 2016. Solar light sensitized p-Ag2O/n-TiO2 nanotubes heterojunction photocatalysts for enhanced hydrogen production in aqueous-glycerol solution. Sol. Energy Mater. Sol. Cells, 154, 78–87. DOI: 10.1016/j.solmat.2016.04.033.
  • 24. Kumar D.P., Lakshmana Reddy N., Kumari M.M., Srinivas B., Durga Kumari V., Sreedhar B., Roddatis V., Bondarchuk O., Karthik M., Neppolian B., Shankar V., 2015. Cu2O-sensitized TiO2 nanorods with nanocavities for highly efficient photocatalytic hydrogen production under solar irradiation. Sol. Energy Mater. Sol. Cells, 136, 157–166. DOI: 10.1016/j.solmat.2015.01.009.
  • 25. Lei W., Wang H., Khan S., Suzuki N., Takagi K., Katsumata K.-I., Teshima K., Terashima C., Fujishima A., 2023. Interfacial molecular regulation of TiO2 for enhanced and stable cocatalyst-free photocatalytic hydrogen production. J. Colloid Interface Sci., 645, 219–226. DOI: 10.1016/j.jcis.2023.04.118.
  • 26. Makula P., Pacia M., Macyk W., 2018. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett., 9, 6814–6817. DOI: 10.1021/acs.jpclett.8b02892.
  • 27. Rafique M., Hajra S., Irshad M., Usman M., Imran M., Assiri M.A., Ashraf W.M., 2023. Hydrogen production using TiO2- Based photocatalysts: a comprehensive review. ACS Omega, 8, 25640–25648. DOI: 10.1021/acsomega.3c00963
  • 28. Sadanandam G., Lalitha K., Kumari V.D., Shankar M.V., Subrahmanyam M., 2013. Cobalt doped TiO2 : A stable and efficient photocatalyst for continuous hydrogen production from glycerol: water mixtures under solar light irradiation. Int. J. Hydrogen Energy, 38, 9655–9664. DOI: 10.1016/j.ijhydene.2013.05.116.
  • 29. Stelmachowski M., Marchwicka M., Grabowska E., Diak M., 2014a. The Photocatalytic conversion of ( biodiesel derived) glycerol to hydrogen – a short review and preliminary experimental results part 1: a review. J. Adv. Oxid. Technol., 17, 167–178. DOI: 10.1515/jaots-2014-0201.
  • 30. Stelmachowski M., Marchwicka M., Grabowska E., Diak M., Zaleska A., 2014b. The photocatalytic conversion of (biodiesel derived) glycerol to hydrogen – a short review and preliminary experimental results part 2: photocatalytic conversion of glicerol to hydrogen in batch and semi-batch laboratory reactors. J. Adv. Oxid. Technol. 17, 179–186. DOI: 10.1515/jaots-2014-0202.
  • 31. Villachica-Llamosas J.G., Ruiz-Aguirre A., Colón G., Peral J., Malato S., 2024. CuO–TiO2 pilot-plant system performance for solar photocatalytic hydrogen production. Int. J. Hydrogen Energy, 51, 1069–1077. DOI: 10.1016/j.ijhydene.2023.07.149.
  • 32. Yu J., Hai Y., Jaroniec M., 2011. Photocatalytic hydrogen pro- duction over CuO-modified titania. J. Colloid Interface Sci., 357, 223–228. DOI: 10.1016/j.jcis.2011.01.101.
  • 33. Yu J., Qi L., Jaroniec M., 2010. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J. Phys. Chem. C, 114, 13118–13125. DOI: 10.1021/jp104488b.
  • 34. Zaleska A., 2008. Doped-TiO2: a review. Recent Pat. Eng., 2, 157–164. DOI: 10.2174/187221208786306289.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c57cda51-998a-4f67-a3e8-578b86530077
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.