PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coded GFDM with decision feedback equaliser for enhanced performance in underwater wireless optical communication

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
Underwater wireless optical communication is the best alternative for many applications especially for high bandwidth data communication between underwater objects and vehicles. The implementation of coding scheme along with advanced modulation technique and equalisation methods is identified as a key research scope for enhancing the performance of the system. In this paper, the coded generalised frequency division multiplexing (GFDM) technology is employed to provide high-data rates and less out-of-band emission. The Bose-Chaudhuri-Hocquenghem (BCH) and Reed-Solomon (RS) coding schemes along with equalisation techniques namely normalised least mean square (NLMS)-based decision feedback equalisers (DFE), minimum mean square error (MMSE) and zero forcing (ZF) are utilized to reduce inter symbol interference (ISI). The bit error rate (BER) performance is evaluated in the presence of pointing error (PE) and turbulence using Monte Carlo channel modelling simulations. The results showed that RS coding with NLMS-DFE outperforms other techniques and achieves a BER of roughly 10⁻⁵ with a signal-to-noise ratio levels below 20 dB. The simulation results demonstrate that RS code with 15 total symbols per code word and 3 data symbols, i.e., RS (15, 3) and BCH code with 31 total symbols in a code word and 6 data symbols, i.e., BCH (31, 6) provided the best error performance among other coding schemes employed. It is inferred that RS (15, 3) coded 2 × 2 multiple input multiple output systems with NLMS-DFE achieved a BER value of 1.1925 × 10⁻⁵ at 11 dB which is 16 dB less than uncoded system. Thus, the coded GFDM improves overall BER performance and has the potential to provide higher reliability for internet of underwater things (IoUT) applications.
Rocznik
Strony
art. no. e148697
Opis fizyczny
Bibliogr. 58 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Electronics and Communication Engineering, Easwari Engineering College, 162 Bharathi Salai, Ramapuram, Chennai, Tamil Nadu 600089, India
autor
  • Department of Electronics and Communication Engineering, Easwari Engineering College, 162 Bharathi Salai, Ramapuram, Chennai, Tamil Nadu 600089, India
autor
  • Department of Electronics and Communication Engineering, Easwari Engineering College, 162 Bharathi Salai, Ramapuram, Chennai, Tamil Nadu 600089, India
Bibliografia
  • [1] Sozer, E. M., Stojanovic, M. & Proakis, J. G. Underwater acoustic networks. IEEE J. Ocean. Eng. 25, 72-83 (2000). https://doi.org/10.1109/48.820738.
  • [2] Stojanovic, M. Recent advances in high-speed underwater acoustic communications. IEEE J. Ocean. Eng. 21, 125-136 (1996). https://doi.org/10.1109/48.486787.
  • [3] BlueComm 200, underwater optical communications and data transfer modem. Sonardyne Int. Ltd. https://www.sonardyne.com/products/bluecomm-200-wireless-underwater-link/
  • [4] Che, X. H., Wells, I., Dickers, G., Kear, P. & Gong, X. C. Re-evaluation of RF electromagnetic communication in underwater sensor networks. IEEE Commun. Mag. 48, 143-151 (2011). https://doi.org/10.1109/MCOM.2010.5673085.
  • [5] Giuseppe S S, Cozzella L. & Leccese F. Underwater optical wireless communication: overview. Sensors 20, 2261 (2020). https://doi.org/10.3390/s20082261.
  • [6] Zeng, Z., Fu, S., Zhang, H., Dong, Y. & Cheng, J. A survey of under-water optical wireless communications. IEEE Commun. Surv. Tutor. 19, 1, 204-238 (2017). https://doi.org/10.1109/COMST.2016.2618841.
  • [7] Sun, X. et al. A review on practical considerations and solutions in underwater wireless optical communication. J. Light. Technol. 38, 421-431 (2020). https://doi.org/10.1109/JLT.2019.2960131.
  • [8] Jurado-Navas, A., Serrato, N. G, Garrido-Balsells, J. & Castillo-Vázquez, M. Error probability analysis of OOK and variable weight MPPM coding schemes for underwater optical communication systems affected by salinity turbulence. OSA Continuum 1, 1131-1143 (2018). https://doi.org/10.1364/OSAC.1.001131.
  • [9] Schirripa Spagnolo, G., Cozzella, L. & Leccese, F. Underwater optical wireless communications: Overview. Sensors (Basel) 20, 2261 (2020). https://doi.org/10.3390/s20082261.
  • [10] Leccese, F. & Schirripa Spagnolo, G. State-of-the art and perspectives of underwater optical wireless communications. Acta IMEKO 10, 25-35 (2021). https://doi.org/10.21014/acta_imeko.v10i4.1097.
  • [11] Mobley, C. D. Light and Water: Radiative Transfer in Natural Waters. (Academic Press, New York, NY, 1994).
  • [12] Domingo, M. C. An overview of the Internet of underwater things. J. Netw. Comput. Appl. 35, 1879-1890 (2012). https://doi.org/10.1016/j.jnca.2012.07.012.
  • [13] Zedini, E. et al. Performance analysis of dual-hop underwater wireless optical communication systems over mixture exponential-generalized gamma turbulence channels. IEEE Trans. Commun. 68, 5718-5731 (2020). https://doi.org/10.1109/TCOMM.2020.3006146.
  • [14] Mobley, C. D. et al. Comparison of numerical model for computing underwater light fields. Appl. Opt. 32, 7484-7504 (1993). https://doi.org/10.1364/AO.32.007484.
  • [15] Hema, R., Sudha, S. & Aarthi, K. Performance studies of MIMO based DCO OFDM in underwater wireless optical communication systems. J. Mar. Sci. Technol. 26, 97-107 (2021). https://doi.org/10.1007/s00773-020-00724-7.
  • [16] Ahmad, Z. et.al. Performance of spatial diversity DCO-OFDM in a weak turbulence underwater visible light communication channel. J. Light. Technol. 38, 2271-2277 (2020). https://doi.org/10.1109/JLT.2019.2963752.
  • [17] Zedini, E. et al. Unified statistical channel model for turbulence induced fading in underwater wireless optical communication systems. IEEE Trans. Commun. 67, 2893-2907 (2019). https://doi.org/10.1109/TCOMM.2019.2891542.
  • [18] Rahman, Z., Bansal, A. & Zafaruddin, S. M. Diversity analysis of multi-aperture UWOC system over EGG channel with pointing errors. IEEE Commun. Lett. 27, 2073-2077 (2023). https://doi.org/10.1109/LCOMM.2023.3281613.
  • [19] Ali, M. A. A. Characteristics of optical channel for underwater optical wireless communication system. IOSR J. Electr. Electron. Eng. 10, 01-09 (2015). https://doi.org/10.9790/1676-10210109.
  • [20] Jamali, M. V. et al. Statistical studies of fading in underwater wireless optical channels in the presence of air bubble, temperature, and salinity random variations. IEEE Trans. Commun. 66, 4706-4723 (2018). https://doi.org/10.1109/TCOMM.2018.2842212.
  • [21] Gussen, C. M. et al. A survey of underwater wireless communication technologies. J. Commun. Inf. Sys. 31, 242-255 (2016). https://doi.org/10.14209/jcis.2016.22.
  • [22] Majlesein, B., Gholami, A. & Ghassemlooy, Z. A Complete Model for Underwater Optical Wireless Communications System. in 11th Int. Symp. Commun. Syst. Networks Digit. Signal Process (CSNDSP) 1-5 (IEEE, 2018). https://doi.org/10.1109/CSNDSP.2018.8471869.
  • [23] Jamali, M. V., Salehi, J. A. & Akhoundi, F. Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme. IEEE Trans Commun. 65, 1176-1192 (2017). https://doi.org/10.1109/TCOMM.2016.2642943.
  • [24] Chen, W. et al. Impact of temperature gradients on average bit error rate performance of low-density parity-check-coded multihop underwater wireless optical communication systems over the generalized gamma distribution. Proc. SPIE 59, 016114 (2020). https://doi.org/10.1117/1.OE.59.1.016114.
  • [25] Geldard, C. T., Thompson, J. & Popoola, W O. Empirical study of the underwater turbulence effect on non-coherent. IEEE Photon. Technol. Lett. 32, 1307-1310 (2020). https://doi.org/10.1109/LPT.2020.3020368.
  • [26] Baykal, Y, Ata, Y. & Gökçe, M.C. Underwater turbulence, its effects on optical wireless communication and imaging: A review. Opt. Laser Technol. 156, 108624 (2022). https://doi.org/10.1016/j.optlastec.2022.108624.
  • [27] Yılmaz A, Elamassie M, Uysal M. Diversity Gain Analysis of Underwater Vertical MIMO VLC Links in the Presence of Turbulence. in 7th IEEE International Black Sea Conference on Communications and Networking 1-6 (IEEE, 2019). https://doi.org/10.1109/BlackSeaCom.2019.8812823.
  • [28] Baykal, Y., Gökçe, M. C. & Ata, Y. Anisotropy effect on performance of subcarrier intensity modulated binary phase shift keying optical wireless communication links in weakly turbulent UW channel. J. Mod. Opt. 66,1871-1875 (2019). https://doi.org/10.1080/09500340.2019.1682208.
  • [29] He, F. Bit error rate of pulse position modulation wireless optical communication in gamma-gamma oceanic anisotropic turbulence. Acta Phys. Sin-Ch. Ed. 68, 164206 (2019). https://doi.org/10.7498/aps.68.20190452 (in Chinese).
  • [30] Rahman, T. Flexible and high-data-rate coherent optical transceivers. (Eindhoven University of Technology, 2017). https://pure.tue.nl/ws/portalfiles/portal/58380578.
  • [31] Mattoussi, F., Khalighi, M. A. & Bourennane, S. Improving perfor-mance of underwater wireless optical communication links by channel coding. Appl. Opt. 57, 2115-2120 (2018). https://doi.org/10.1364/AO.57.002115.
  • [32] Cox, W. C, Simpson, J. A., Domizioli, C. P., Muth, J. F. & Hughes, B. L. An Underwater Optical Communication System Implementing Reed–Solomon Channel Coding. in OCEANS 1-6 (IEEE, 2008). https://doi.org/10.1109/OCEANS.2008.5151992.
  • [33] Xu, J. et al. OFDM-based broadband underwater wireless optical communication system using a compact blue LED. Opt. Commun. 369, 100-105 (2016). https://doi.org/10.1016/j.optcom.2016.02.044.
  • [34] Huang, A., Tao, L. & Jiang, Q. BER Performance of Underwater Optical Wireless MIMO Communications With Spatial Modulation Under Weak Turbulence. in OCEANS-MTS 1-15 (IEEE, 2018). https://doi.org/10.1109/OCEANSKOBE.2018.8559096.
  • [35] Amantayeva, A., Yerzhanova, M. & Kizilirmak, R. C. Multiuser MIMO for Underwater Visible Light Communication. in 2018 International Conference on Computing and Network Communications (CoCoNet) 164-168 (IEEE, 2018). https://doi.org/10.1109/CoCoNet.2018.8476887.
  • [36] Nissel, R., Schwartz, S. & Rupp, M. Filter bank multicarrier modulation schemes for future mobile communications. IEEE J. Sel. 35, 1768-1782 (2018). https://doi.org/10.1109/JSAC.2017.2710022.
  • [37] Rajappa, A. C. J. et al. Golden coded GFDM for 5G communication. Wirel. Pers. Commun. 115, 2335-2348 (2020). https://doi.org/10.1007/s11277-020-07684-6.
  • [38] Kaushal, H. & Kaddoum, G. Underwater optical wireless communication. IEEE Access. 4, 1518-1547 (2016). https://doi.org/10.1109/ACCESS.2016.2552538.
  • [39] Ramadan, K. & Elbakry, M. Efficient equalization and carrier frequency offset compensation for underwater wireless communication systems. Ann. Data Sci. 9, 1-21 (2022). https://doi.org/10.1007/s40745-022-00449-x.
  • [40] Chao, F. et al. Underwater wireless optical communication utilizing low-complexity sparse pruned-term-based nonlinear decision-feedback equalization. Appl. Opt. 61, 6534-6543 (2022). https://doi.org/10.1364/AO.462827.
  • [41] Krishnamoorthy, R. N., Rajkumar, I., Alexander, J. & Devaerakkam, M. Impact of equalizer step size in underwater acoustic communication channel. Int. J. Comput. Netw. Secur. 13, 29-38 (2021). https://doi.org/10.5815/ijcnis.2021.01.03.
  • [42] Zhang, J. et al. Monte-Carlo-based optical wireless UW channel modeling with oceanic turbulence. Opt. Commun. 475, 126214 (2020). https://doi.org/10.1016/j.optcom.2020.126214.
  • [43] Kumar, K., Jha, P. & Shukla, S. Monte Carlo simulation of BER performance of underwater optical link over log normal fading channel. Int. J. Emerg. Technol. Innov. Eng. 5, 722-725 (2019). https://ssrn.com/abstract=3450134.
  • [44] Murad, M., Tasadduq, I. A. & Otero, P. Coded-GFDM for reliable communication in underwater acoustic channels. Sensors 22, 2639 (2022). https://doi.org/10.3390/s22072639.
  • [45] Michailow, N. et al. Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Trans. Commun. 62, 3045-3061 (2014). https://doi.org/10.1109/TCOMM.2014.2345566.
  • [46] Farhang, A., Marchetti, N. & Doyle, L. Low complexity transceiver design for GFDM. IEEE Trans. Signal Process. 64, 1507-1518 (2016). https://doi.org/10.1109/TSP.2015.2502546.
  • [47] Ramavath, P. N., Kumar, A., Godkhindi, S. S. & Acharya, U. S. Experimental studies on the performance of underwater optical communication link with channel coding and interleaving. CSI Trans. ICT 6, 65–70, (2018). https://doi.org/10.1007/s40012-017-0179-3
  • [48] Farid, A. A. & Hranilovic, S. Outage Probability for Free-Space Optical Systems Over Slow Fading Channels With Pointing Errors. in LEOS 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society 82-83 (IEEE, 2006). https://doi.org/10.1109/LEOS.2006.278847.
  • [49] Yu, X., Jin, W., Sui, M. & Lan, Z. Evaluation of Forward Error Correction Scheme for Underwater Wireless Optical Communication. in 2011 IEEE, Third International Conference on Communications and Mobile Computing 527-530 (IEEE, 2011). https://doi.org/10.1109/CMC.2011.49.
  • [50] Labrador, Y., Karimi, M., Pan, D. & Miller, J. Modulation and error correction in the underwater acoustic communication channel. Int. J. Comput. Sci. Netw. Secur. 9, 123-130 (2009). http://paper.ijcsns.org/07_book/200907/20090718.pdf.
  • [51] Lin S, Costello Jr., D. J. Error Control Coding. (Prentice Hall: Pearson Education India; 2001).
  • [52] Moon, T. K. Error Correction Coding: Mathematical Methods and Algorithms. (John Wiley & Sons, 2005). https://doi.org/10.1002/0471739219.
  • [53] Ramavath, P. N, Udupi, S, A, & Krishnan, P. High-speed and reliable underwater wireless optical communication system using multiple-input multiple-output and channel coding techniques for iout applications. Opt. Commun. 461, 125229 (2020). https://doi.org/10.1016/j.optcom.2019.125229.
  • [54] Mahapatra, S. K & Varshney, S, K. Performance of the Reed-Solomon-coded underwater optical wireless communication system with orientation-based solar light noise. J. Opt. Soc. Am. 39, 1236-1245 (2022). https://doi.org/10.1364/JOSAA.453257.
  • [55] Safari, M. & Uysal, M. Relay-assisted free-space optical communication. IEEE Trans.Wireless Commun. 7, 5441-5449 (2008). https://doi.org/10.1109/T-WC.2008.071352.
  • [56] Manimegalai, C. T., Bhatta, H., Thakur, H. & Iliyas, A. Channel modeling for UWOC: a simulation approach. J. Opt. 51, 810-818 (2022). https://doi.org/10.1007/s12596-022-00854-8.
  • [57] Mahanta, S. & Rajauria, A. Analysis of MIMO System through ZF & MMSE Detection Scheme. Int. J. Electron. Commun. Technol. 4, 84-87 (2013). https://iject.org/vol4/spl4/c0142.pdf.
  • [58] Mitra, A. An efficient decision feedback equalizer with a novel block based NLMS algorithm. IETE J. Res. 54, 61-69 (2014). https://doi.org/10.1080/03772063.2008.10876183.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c57b3481-ad4f-40cc-953f-d1fcc1132964
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.