PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Outer independent rainbow dominating functions in graphs

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A 2-rainbow dominating function (2-rD function) of a graph G = (V, E) is a function ƒ: V(G) → {0, {1}, {2}, {1, 2}} having the property that if ƒ (x) = 0, then ƒ: (N(x)) = {1, 2}. The 2-rainbow domination number [formula] is the minimum weight of [formula] taken over all 2-rainbow dominating functions ƒ An outer-independent 2-rainbow dominating function (OI2-rD function) of a graph G is a 2-rD function ƒ for which the set of all v isin; V(G) with fnof; (v) = 0 is independent. The outer independent 2-rainbow domination number [formula] is the minimum weight of an OI2-rD function of G. In this paper, we study the OI2-rD number of graphs. We give the complexity of the problem OI2-rD of graphs and present lower and upper bounds on [formula ≤. Moreover, we characterize graphs with some small or large OI2-rD numbers and we also bound this parameter from above for trees in terms of the order, leaves and the number of support vertices and characterize all trees attaining the bound. Finally, we show that any ordered pair (a, b) is realizable as the vertex cover number and OI2-rD numbers of some non-trivial tree if and only if a + 1 ≤ b ≤ 2a.
Rocznik
Strony
599--615
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
  • University of Mazandaran Department of Mathematics Babolsar, Iran
  • University of Mazandaran Department of Mathematics Babolsar, Iran
Bibliografia
  • [1] B. Bresar, M. Henning, D. Rall, Rainbow domination in graphs, Taiwanese J. Math. 12 (2008), 213-225.
  • [2] B. Bresar, T.K. Sumenjak, On the 2-rainbow domination in graphs, Discrete Appl. Math. 155 (2007), 2394-2400.
  • [3] G. Chang, J. Wu, X. Zhu, Rainbow domination on trees, Discrete Appl. Math. 158 (2010), 8-12.
  • [4] T. Gallai, Uber extreme Punkt-und Kantenmengen, Ann. Univ. Sci. Budapest Eotvos Sect. Math. 2 (1959), 133-138.
  • [5] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, W.H. Freeman & Co., New York, USA, 1979.
  • [6] G. Hao, D.A. Mojdeh, S. Wei, Z. Xie, Rainbow domination in the Cartesian product of directed paths, Australas. J. Combin. 70 (2018), 349-361.
  • [7] Q. Kang, V. Samodivkin, Z. Shao, S.M. Sheikholeslami, M. Soroudi, Outer-independent k-rainbow domination, J. Taibah. Univ. Sci. 13 (2019), 883-891.
  • [8] Zh. Mansouri, D.A. Mojdeh, Rainbow and independent rainbow domination of graphs, submitted.
  • [9] D.A. Mojdeh, Zh. Mansouri, On the independent double roman domination in graphs, Bull. Iran. Math. Soc. (2019), https://doi.org/10.1007/s41980-019-00300-9.
  • [10] D.A. Mojdeh, A. Parsian, I. Masoumi, Characterization of double Roman trees, Ars Combin., to appear.
  • [11] D.B. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, USA, 2001.
  • [12] Y. Wu, N. Jafari Rad, Bounds on the 2-rainbow domination number of graphs, Graphs and Combin. 29 (2013), 1125-1133.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c578fd19-b3f9-437e-8d45-3d4f8fd4dfcb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.