Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Banana peel is biomass that can be converted into activated carbon. Changing activated carbon from banana peel biomass would eventually become an innovation, bringing biomass to prominence as a new and renewable energy source. Electromagnetic waves are another approach for activating carbon. Gamma irradiation functions as an ionization agent or initiator, resulting in the production of free radicals. Gamma electromagnetic exposure provides clean energy with no production of chemical components. The purpose of this experiment was to investigate the effect of 60Co gamma irradiation on the chemical functional group, surface area, diameter porous formation, and morphology of carbon at 10 to 50 kGy gamma radiation exposure using FTIR, BET, and SEM instrumentation. The results revealed that modification of activated carbon by irradiation and surfactant has a substantial effect on the formation of diameter pores, functional group formation, and porosity structure. The result showed that gamma irradiation exposure significantly affected pore distribution formation on activated carbon because of cellulose decomposition. Gamma irradiation treatment with optimum doses of 30 and 40 kGy on AC/SLS increased the adsorption capacity of Pb2+ to 54.31% and 52.67% compared to AC/SLS without irradiation at 41.65%.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
70--82
Opis fizyczny
Twórcy
autor
- Bandung Institute of Technology, Department of Doctoral Nuclear Engineering, Faculty of Mathematics and Natural Sciences, Ganesha 10 Street, Bandung 40132, Indonesia
- Department of Nuclear Chemical Engineering, Indonesia Polytechnic Institute of Nuclear Technology, National Research and Innovation Agency, Babarsari 60 Street, P.O. Box 6101, Yogyakarta 55281, Indonesia
autor
- Department of Nuclear Chemical Engineering, Indonesia Polytechnic Institute of Nuclear Technology, National Research and Innovation Agency, Babarsari 60 Street, P.O. Box 6101, Yogyakarta 55281, Indonesia
- Bandung Institute of Technology, Department of Doctoral Nuclear Engineering, Faculty of Mathematics and Natural Sciences, Ganesha 10 Street, Bandung 40132, Indonesia
autor
- Bandung Institute of Technology, Department of Doctoral Nuclear Engineering, Faculty of Mathematics and Natural Sciences, Ganesha 10 Street, Bandung 40132, Indonesia
Bibliografia
- 1. Alatzas, S.; Moustakas, K.; Malamis, D.; Vakalis, S. 2019. Biomass potential from agricultural waste for energetic utilization in Greece. Energies 12, 95. https://doi.org/10.3390/en12061095
- 2. Kusuma, H.D.; Rochmadi; Prasetyo, I.; Ariyanto, T. 2021. Mesoporous manganese oxide/lignin-derived carbon for high performance of supercapacitor electrodes. Molecules 26, 7104. https://doi.org/10.3390/molecules26237104
- 3. Baby, R.; Saifullah, B.; Hussein, M.Z. 2019. Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remediation. Nanoscale Res. Lett. 14, 341.
- 4. Ghasemi, M.; Daud, W.R.W.; Hassan, S.H.A.; Oh, S.E.; Ismail, M.; Rahimnejad, M.; Jahim, J.M. 2013. Nano-structured carbon as electrode material in microbial fuel cells: a comprehensive review. J. Alloys Compd. 580, 245–255. https://doi.org/10.1016/j.jallcom.2013.05.094
- 5. Ghasemi, M.; Shahgaldi, S.; Ismail, M.; Yaakob, Z.; Daud, W.R.W. New generation of carbon nanocomposite proton exchange membranes in microbial fuel cell systems. Chem. Eng. J. 2012, 184, 82–89. https://doi.org/10.1016/j.cej.2012.01.001
- 6. Ogunlude, P.; Abunumah, O.; Orakwe, I.; Shehu, H.; Muhammad-Sukki, F.; Gobina, E. 2019. Comparative evaluation of the effect of pore size and temperature on gas transport in nano-structured ceramic membranesfor biogas upgrading. WEENTECH Proc. Energy 5, 195–205. https://doi.org/10.32438/wpe.8319
- 7. Zhang, Z.; Zhu, Z.; Shen, B.; Liu, L. 2019. Insights into biochar and hydrochar production and applications: A review. Energy 171, 581–598. https://doi.org/10.1016/j.energy.2019.01.035
- 8. Zheng, X.; Wang, H.; Gong, Q.; Zhang, L.; Cui, G.; Li, Q.; Chen, L.; Wu, F.; Wang, S. 2015. Highly Luminescent Carbon Nanoparticles as Yellow Emission Conversion Phosphors. Mater. Lett. 143, 290–293. https://doi.org/10.1016/j.matlet.2014.12.138
- 9. Chaikittisilp, W.; Hu, M.; Wang, H.; Huang, H.S.; Fujita, T.; Wu, K.C.W.; Chen, L.C.; Yamauchi, Y.; Ariga, K. 2012. Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem. Commun. 48, 7259–7261. https://doi.org/10.1039/c2cc33433j
- 10. Georgakilas, V.; Perman, J.A.; Tucek, J.; Zboril, R. 2015. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 115, 4744–4822. https://doi.org/10.1021/cr500304f
- 11. Li, X.; Rui, M.; Song, J.; Shen, Z.; Zeng, H. 2015. Carbon and graphene quantum dots for optoelectronic and energy devices: A review. Adv. Funct. Mater. 25, 4929–4947. https://doi.org/10.1002/adfm.201501250
- 12. Marpaung, F.; Kim, M.; Khan, J.H.; Konstantinov, K.; Yamauchi, Y.; Hossain, M.S.A.; Na, J.; Kim, J. 2019. Metal–organic framework (MOF)-derived nanoporous carbon materials. Chem. An. Asian J. 14, 1331–1343. https://doi.org/10.1002/asia.201900026
- 13. Sadeghi Rad, T.; Ansarian, Z.; Khataee, A.; Vahid, B.; Doustkhah, E. 2021. N-doped graphitic carbon as a nanoporous MOF-derived nanoarchitecture for the efficient sonocatalytic degradation process. Sep. Purif. Technol. 256, 117811. https://doi.org/10.1016/j.seppur.2020.117811
- 14. Jirimali, H.; Singh, J.; Boddula, R.; Lee, J.K.; Singh, V. 2022. Nano‐structured carbon: its synthesis from renewable agricultural sources and important applications. Materials 15, 3969. https://doi.org/10.3390/ma15113969
- 15. Liu, Y.J.; Liu, S.; Li, Z.W.; Ma, M.G.; Wang, B. 2018. A microwave synthesized mesoporous carbon sponge as an efficient adsorbent for Cr(VI) removal. RSC Adv. 8, 7892–7898. https://doi.org/10.1039/c8ra00012c
- 16. Sun, X.; Liu, Y.; Xu, R.; Chen, Y. 2022. MOF-derived nanoporous carbon incorporated in the cation exchange membrane for gradient power generation. Membranes 12, 322. https://doi.org/10.3390/membranes12030322
- 17. Al-Latief, D.N.; Arnelli; Astuti, Y. 2015. Synthesis of sodium lauryl sulphate (SLS)-modified activated carbon from risk husk for waste lead (Pb) removal. AIP Conf. Proc. 1699, 060017. https://doi.org/10.1063/1.4938371.
- 18. Anisyah, A.; Arnelli, A.; Astuti, Y. 2021. SMACSLS dari tempurung kelapa menggunakan aktivator ZnCl2 dan gelombang mikro sebagai adsorben kation Pb(II). Greensph. J. Environ. Chem 1, 1–6.
- 19. Liu, Z.; Huang, Y.; Kommentar, G.Z. 2016. Label für nachhaltigen fisch fehlt–wissen–süddeutsche. BioResources 11, 3178–3190.
- 20. Oginni, O.; Singh, K.; Oporto, G.; Dawson-Andoh, B.; McDonald, L.; Sabolsky, E. 2019. Influence of one-step and two-step KOH activation on activated carbon characteristics. Bioresour. Technol. Rep. 7, 100266. https://doi.org/10.1016/j.biteb.2019.100266
- 21. Hassan, M.; Liu, Y.; Naidu, R.; Parikh, S.J.; Du, J.; Qi, F.; Willett, I.R. 2020. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: a meta-analysis; Elsevier B.V.: Amsterdam, The Netherlands, 744.
- 22. Negara, D.N.K.P.; Nindhia, T.G.T.; Surata, I.W.; Hidajat, F.; Sucipta, M. 2020. Textural characteristics of activated carbons derived from tabah bamboo manufactured by using H3PO4 chemical activation. Mater. Today Proc. 22, 148–155. https://doi.org/10.1016/j.matpr.2019.08.030
- 23. Xiao, H.; Lu, Y.; Wang, M.; Qin, X.; Zhao, W.; Luan, J. 2013. Effect of gamma-irradiation on the mechanical properties of polyacrylonitrile-based carbon fiber. Carbon 52, 427–439. https://doi.org/10.1016/j.carbon.2012.09.054
- 24. Phonlam, T.; Weerasuk, B.; Sataman, P.; Duangmanee, T.; Thongphanit, S.; Nilgumhang, K.; Anantachaisilp, S.; Chutimasakul, T.; Kwamman, T.; Chobpattana, V. 2023. Ammonia modification of activated carbon derived from biomass via gamma irradiation vs. hydrothermal method for methylene blue removal. South Afr. J. Chem. Eng. 43, 67–78. https://doi.org/10.1016/j.sajce.2022.10.004
- 25. Naikwadi, A.T.; Sharma, B.K.; Bhatt, K.D.; Mahanwar, P.A. 2022. Gamma radiation processed polymeric materials for high performance applications: A review. Front. Chem. 10, 837111. https://doi.org/10.3389/fchem.2022.837111
- 26. Antonangelo, J.A.; Zhang, H.; Sun, X.; Kumar, A. 2019. Physicochemical properties and morphology of biochars as affected by feedstock sources and pyrolysis temperatures. Biochar 1, 325–336. https://doi.org/10.1007/s42773-019-00028-z
- 27. Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. 2010. Dynamic molecular structure of plant biomass-derived black carbon(biochar)- supporting information. Environ. Sci. Technol. 44, 1247–1253.
- 28. Yolanda, Y.D.; Nandiyanto, A.B.D. 2021. How to read and calculate diameter size from electron microscopy images. ASEAN J. Sci. Eng. Educ. 2, 11–36. https://doi.org/10.17509/ajsee.v2i1.35203
- 29. El-Hendawy, A.N.A. 2006. Variation in the FTIR Spectra of a Biomass under Impregnation, Carbonization and Oxidation Conditions. J. Anal. Appl. Pyrolysis 75, 159–166. https://doi.org/10.1016/j.jaap.2005.05.004
- 30. Reza, M.S.; Ahmed, A.; Caesarendra, W.; Abu Bakar, M.S.; Shams, S.; Saidur, R.; Aslfattahi, N.; Azad, A.K. 2019. Acacia holosericea: An invasive species for biochar, bio-oil, and biogas production. Bioengineering 6, 33. https://doi.org/10.3390/bioengineering6020033
- 31. Walo, M. 2018. Radiaton-Induced Grafting. In Applications of Ionizing Radiation in Materials Processing; Institute of Nuclear Chemistry and Technology: Warszawa, Paland.
- 32. Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069. https://doi.org/10.1515/pac-2014-1117
- 33. Nowruzi, R.; Heydari, M.; Javanbakht, V. 2020. Synthesis of a chitosan/polyvinyl alcohol/activate carbon biocomposite for removal of hexavalent chromium from aqueous solution. Int. J. Biol. Macromol. 147, 209–216. https://doi.org/10.1016/j.ijbiomac.2020.01.044
- 34. Ashfaq, A.; Clochard, M.C.; Coqueret, X.; Dispenza, C.; Driscoll, M.S.; Ulański, P.; Al-Sheikhly, M. 2020. Polymerization reactions and modifications of polymers by ionizing radiation. Polymers 12, 2877. https://doi.org/10.3390/polym12122877
- 35. Augustine, R.; Saha, A.; Jayachandran, V.P.; Thomas, S.; Kalarikkal, N. 2015. Dose-dependent effects of gamma irradiation on the materials properties and cell proliferation of electrospun polycaprolactone tissue engineering scaffolds. Int. J. Polym. Mater. Polym. Biomater. 64, 526–533. https://doi.org/10.1080/00914037.2014.977900
- 36. Erizal, E.; Abbas, B.; Sukaryo, S.G.; Barleany, D.R. 2015. Synthesis and characterization superabsorbent hydrogels of partially neutralized acrylic acid prepared using gamma rradiation; swelling and thermal behavior. Indones. J. Chem. 15, 281–287. https://doi.org/10.22146/ijc.21197
- 37. Paula, M.V.; de Azevedo, L.A.; de Lima Silva, I.D.; Vinhas, G.M.; Junior, S.A. 2021. Effects of gamma radiation on nanocomposite films of polycaprolactone with modified MCM-48. Polimeros 31, 1–10. https://doi.org/10.1590/0104-1428.20210044
- 38. Gueven, O. 2023. An overview of current developments in applied radiation chemistry of polymers. In Proceedings of the Advances in radiation chemistry of polymers. IAEATECDOC-1420, IAEA, Notre Dame, IN, USA 13–17 September 33–39.
- 39. Shinyama, K. 2018. Influence of electron beam irradiation on electrical insulating properties of PLA with soft resin added. Polymers 10, 898. https://doi.org/10.3390/polym10080898
- 40. Tamada, M. 2018. Radiation processing of polymers and its applications. in radiation applications; Kudo, H., Ed.; Springer: Singapore, 63–80.
- 41. Reichmanis, E.; Frank, C.W.; O’Donnell, J.H.; Hill, D.J.T. 1993. Radiation Effects on Polymeric Materials; Springer International Publishing: Berlin/Heidelberg, Germany.
- 42. Kudoh, H.; Sasuga, T.; Seguchi, T. 1996. High-energy ion irradiation effects on polymer materials. ACS Symp. Ser. 620, 2–10. https://doi.org/10.1021/bk-1996-0620.ch001
- 43. Velo-Gala, I.; López-Peñalver, J.J.; Sánchez-Polo, M.; Rivera-Utrilla, J. 2014. Surface modifications of activated carbon by gamma irradiation. Carbon 67, 236–249. https://doi.org/10.1016/j.carbon.2013.09.087
- 44. Tarawneh, M.A.; Saraireh, S.A.; Chen, R.S.; Ahmad, S.H.; Tarawni, M.; Jiun Y.L. 2021. Gamma irradiation influence on mechanical, thermal and conductivity properties of hybrid carbon nanotubes/montmorillonite nanocomposites. Radiation Physics and Chemistry 179, 1–11. https://doi.org/10.1016/j.radphyschem.2020.109168
- 45. Annisa, A.; Prasetyo, I.; Swantomo, D.; Ariyanto, T. 2021. Surface Modification of Nanoporous Carbon Using Gamma Irradiation Treatment as Supercapacitor Material 2349, 02000. https://doi.org/10.1063/5.0052360
- 46. Ariyanti, D.; Swantomo, D.; Permana, S.; Pramutadi, A. 2023. Effect of Gamma 60Co Irradiation on Morphology of Carbon/Sodium Lauryl Sulphate Using a Novel SEM EDS. Malaysian Journal of Microscopy 19, 5, 15–23. https://malaysianjournalofmicroscopy.org/ojs/index.php/mjm/article/view/705
- 47. Fel, E.K. 2016. Comparative Study of Gamma-Irradiated PP and PE Polyolefins Part 2: Properties of PP/PE Blends Obtained by Reactive Processing with Radicals Obtained by High Shear or Gamma-Irradiation. Polymer 82; https://doi.org/10.1016/j.polymer.2015.10.070, 217–227
- 48. More, C.V., Alsayed, Z., Badawi, M.S., Thabet, A.A., Pawar, P.P. 2021. Polymeric composite materials for radiation shielding: a review. Environ. Chem. Lett. 19; https://doi.org/10.1007/s10311-021-01189-9, 2057–2090
- 49. Maha F.A., Atheer M.A. 2025. The potential significance of microwave-assisted catalytic pyrolysis for valuable bio-products driven from albizia tree. Applied Sciences and Engineering Process. 18.01. https://doi.org/10.14416/j.asep.2024.07.016
- 50. Maha F.A., Atheer M.A., Wameath S.A. 2024. Catalytic microwave pyrolysis of Albizia branches using Iraqi bentonite clays. Iraqi Journal of Chemical and Petroleum Engineering. 25, 2, https://doi.org/10.31699/IJCPE.2024.2.16
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5782a8b-601d-4c51-acb8-24df50119e20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.