Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
On-chip optical-interconnect technology emerges as an attractive approach due to its ultra-large bandwidth and ultra-low power consumption. Silicon-on-insulator (SOI) wire waveguides, on the other hand, have been identified to potentially replace copper wires for intra-chip communication. To take advantage of the wide bandwidth of SOI waveguides, wavelengthdivision multiplexing (WDM) has been implemented. However, WDM have inherent drawbacks. Mode-division multiplexing (MDM) is a viable alternative to WDM in MIMO photonic circuits on SOI as it requires only one carrier wavelength to operate. In this vein, mode converters are key components in on-chip MDM systems. The goal of this paper is to introduce a transverse electric mode converter. The suggested device can convert fundamental transverse electric modes to first-order transverse electric ones and vice versa. It is based on small material perturbation which introduces gradual coupling between different modes. This device is very simple and highly compact; the size of which is 3 μm². Mathematical expressions for both the insertion loss and crosstalk are derived and optimized for best performance. In addition, three-dimensional finite-difference time-domain (3D-FDTD) simulations are performed in order to verify the mathematical model of the device. Our numerical results reveal that the proposed device has an insertion loss of 1.2 dB and a crosstalk of 10.1 dB. The device’s insertion loss can be decreased to 0.95 dB by adding tapers to its material perturbation.
Rocznik
Tom
Strony
275--280
Opis fizyczny
Bibliogr. 14 poz., rys., wykr.
Twórcy
autor
- Electrical Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt
autor
- Electrical Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt
autor
- Electrical Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt
Bibliografia
- [1] J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Optics express, vol. 22, no. 11, pp. 12 799–12 807, 2014. [Online]. Available: https://doi.org/10.1364/OE.22.012799
- [2] H. M. H. Shalaby, “Bidirectional mode-division multiplexers with antireflection gratings,” Applied optics, vol. 57, no. 3, pp. 476–484, 2018. [Online]. Available: https://doi.org/10.1364/AO.57.000476
- [3] B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica, vol. 2, no. 6, pp. 530–535, 2015. [Online]. Available: https://doi.org/10.1364/OPTICA.2.000530
- [4] X. Guan, Y. Ding, and L. H. Frandsen, “Ultra-compact broadband higher order-mode pass filter fabricated in a silicon waveguide for multimode photonics,” Optics letters, vol. 40, no. 16, pp. 3893–3896, 2015. [Online]. Available: https://doi.org/10.1364/OL.40.003893
- [5] C. Sun, Y. Yu, G. Chen, and X. Zhang, “Integrated switchable mode exchange for reconfigurable mode-multiplexing optical networks,” Optics letters, vol. 41, no. 14, pp. 3257–3260, 2016. [Online]. Available: https://doi.org/10.1364/OL.41.003257
- [6] C. Sun, W. Wu, Y. Yu, X. Zhang, and G. T. Reed, “Integrated tunable mode filter for a mode-division multiplexing system,” Optics letters, vol. 43, no. 15, pp. 3658–3661, 2018. [Online]. Available: https://doi.org/10.1364/OL.43.003658
- [7] K. T. Ahmmed, H. P. Chan, and B. Li, “Broadband highorder mode pass filter based on mode conversion,” Optics letters, vol. 42, no. 18, pp. 3686–3689, 2017. [Online]. Available: https: //doi.org/10.1364/OL.42.003686
- [8] Y.-S. Lee, K.-S. Lim, M. R. Islam, M.-H. Lai, and H. Ahmad, “Dynamic lp 01–lp 11 mode conversion by a tilted binary phase plate,” Journal of Lightwave Technology, vol. 35, no. 16, pp. 3597–3603, 2017. [Online]. Available: https://doi.org/10.1109/JLT.2016.2599179
- [9] B. E. Abu-Elmaaty, M. S. Sayed, H. M. H. Shalaby, R. K. Pokharel, and S. Anand, “Silicon-on-insulator fundamental to firstorder dual polarization mode converter based on si-si3n4 phase plate waveguide,” in ICTON 2018 – 20th International Conference on Transparent Optical Networks. IEEE, 2018. [Online]. Available: https://doi.org/10.1109/ICTON.2018.8473997
- [10] H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Silicon wire waveguide te 0/te 1 mode conversion Bragg grating with resonant cavity section,” Optics Express, vol. 25, no. 14, pp. 16 672– 16 680, 2017. [Online]. Available: https://doi.org/10.1364/OE.25.016672
- [11] S.-H. Kim, R. Takei, Y. Shoji, and T. Mizumoto, “Single-trench waveguide te-tm mode converter,” Optics express, vol. 17, no. 14, pp. 11 267–11 273, 2009. [Online]. Available: https://doi.org/10.1364/OE.17.011267
- [12] A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE Journal of Quantum Electronics, vol. 9, no. 9, pp. 919–933, 1973. [Online]. Available: https://doi.org/10.1109/JQE.1973.1077767
- [13] B. E. Abu-Elmaaty, M. S. Sayed, R. K. Pokharel, and H. M. Shalaby, “General silicon-on-insulator higher-order mode converter based on substrip dielectric waveguides,” Applied optics, vol. 58, no. 7, pp. 1763–1771, 2019. [Online]. Available: https://doi.org/10.1364/AO.58.001763
- [14] O. M. Nawwar, H. M. H. Shalaby, and R. K. Pokharel, “Modeling, simulation, and fabrication of bi-directional mode-division multiplexing for silicon-on-insulator platform,” Applied optics, vol. 57, no. 1, pp. 42–51, 2018. [Online]. Available: https://doi.org/10.1364/AO.57.000042
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c574032e-f718-4d2b-9490-e53c5b264c02