PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of V-Ti on Dynamic Recrystallization Behavior and Hot Deformation Activation Energy of 30MSV6 Micro-alloyed Steel

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the current study, the hot deformation of medium carbon V-Ti micro-alloyed steel was surveyed in the temperature range of 950 to 1150°C and strain rate range of 0.001 to 1 s-1 after preheating up to 1200°C with a compression test. In all cases of hot deformation, dynamic recrystallization took place. The influence of strain rate and deformation temperature on flow stress was analyzed. An increase in the strain rate and decrease in the deformation temperature postponed the dynamic recrystallization and increased the flow stress. The material constants of micro-alloyed steel were calculated based on the constitutive equations and Zener-Hollomon parameters. The activation energy of hot deformation was determined to be 458.75 kJ/mol, which is higher than austenite lattice self-diffusion activation energy. To study the influence of precipitation on dynamic recrystallization, the stress relaxation test was carried out in a temperature range of 950 to 1150°C after preheating up to 1200°C. The results showed no a stress drop while representing the interaction of particles with dynamic recrystallization.
Twórcy
autor
  • Golpayegan University of Technology, Department of Metallurgy & Materials Engineering, P.B.: 87717-65651, Golpayegan, Iran
autor
  • Golpayegan University of Technology, Department of Metallurgy & Materials Engineering, P.B.: 87717-65651, Golpayegan, Iran
Bibliografia
  • [1] J. R. Davis, Alloying: Understanding the basics, 1st Edition, ASM International, Ohio (2001).
  • [2] S. H. Mohamadi Azghandi, V. Ghanooni Ahmadabadi, I. Raoofian, F. Fazeli, M. Zare, A. Zabett, H. Reihani, Mater. Design 88 (1), 751 (2015), DOI: 10.1016/j.matdes.2015.09.046.
  • [3] J. Wang, J. Chen, Z. Zhao, X. Ruan, J. Iron steel Res. Int. 15 (3), 78 (2008), DOI: 10.1016/S1006-706X(08)60130-2.
  • [4] M. I. Equbal, P. Talukdar, V. Kumar, R. K. Ohdar, Procedia Mat. Sci. 6, 674 (2014), DOI: 10.1016/j.mspro.2014.07.083
  • [5] H. L. Wei, G. Q. Liu, X. Xiao, M. Zhang, Mater. Sci. Eng. A 573, 215 (2013), DOI:10.1016/j.msea.2013.03.009.
  • [6] M. Gomez, S. F. Medina, Int. J. Mater. Res. 102 (10), 1197 (2011), DOI: 10.3139/146.110585.
  • [7] S. K. Badjena, J. K. Park, Mater. Sci. Eng. A. 548 (30), 126 (2012), DOI:10.1016/j.msea.2012.03.102.
  • [8] Y. She, Z. H. Zhang, J. Yang, J. T. Ju, Mater. Sci. Forum 724, 287 (2012), DOI: 10.4028/www.scientific.net/MSF.724.287.
  • [9] Z. Wang, X. Sun, Z. Yang, Q. Yong, C. Zhang, Z. Li, Y. Weng, Ma-ter. Sci. Eng. A 573, 84 (2013), DOI: 10.1016/j.msea.2013.02.056.
  • [10] W. J. Liu, J. J. Jonas, Metal. Trans. A 19 (6), 1403 (1988).
  • [11] W. J. Liu, J. J. Jonas, Metal. Trans. A. 19 (6), 1415 (1988).
  • [12] F. J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena. 2nd Edition. Elsevier Science Ltd, Oxford (2002).
  • [13] Z. Shi-li, C. Hua-zhen, Y. Jian-song, H. Wen-hao, Z. Guo-qu, J. Iron Steel Res. Int. 22 (3), 264 (2015), DOI:10.1016/S1006-706X(15)60040-1.
  • [14] X. Dong, Z. Miaoyong, T. Zhengyou, S. Chao, J. Wuhan Uni. Tech. Mater. Sci. 28 (4), 819 (2013), DOI: 10.1016/j.msea.2012.04.063.
  • [15] G. E. Dieter, Mechanical Metallurgy. Third edition. McGraw-Hill: NY (1976).
  • [16] J. Chandra, R. P. Srivastav, Constitutive Models of Deformation, 1st edition, SIAM, Philadelphia (1987).
  • [17] S. Akbari Mousavi, M. Meisami, Investigation on Zener-Holloman parameter of a medium carbon Low alloy 1Cr-1Mn-1Si-1.5Ni Under Hot Deformation Test, Proc. Metals 2010, Roznov pod Radhostem (Eds), Czech Republic (2010).
  • [18] H. J. McQueen, N. D. Ryan, Mater. Sci. Eng. A 322 (1-2), 43 (2002), DOI: 10.1016/S0921-5093(01)01117-0.
  • [19] S. H. Mohamadi Azghandi, V. Ghanooni Ahmadabadi, A. Zabett, Philosophical Magazine 94 (24), 2758 (2014), DOI: 10.1080 /14786435.2014.932460.
  • [20] L. Ratke, P. W. Voorhees, Growth and Coarsening: Ostwald Ripening in Material Processing, Springer, Berlin Heidelberg (2013).
  • [21] Materials Science and Technology, Chapter 8, F. B. Pickering, High Strength Low Alloy Steels, Wiley-VCH Verlag GmbH & Co. KgaA (2006).
  • [22] T. Nishizawa, I. Ohnuma, K. Ishida, Materials Transaction, JIM 38 (11), 950 (1997), DOI: 10.2320/matertrans1989.38.950.
  • [23] S. F. Medina, A. Quispe, M. Gomez, Metall. Mater Trans. A 45, 1524 (2014), DOI: 10.1007/s11661-013-2068-1.
  • [24] J. A. Mohallem, J. B. Martins, C. A. Martins, M.L.P. Machado, Metall. Mater. 68 (4), 435 (2015), DOI: 10.1590/0370-44672014680140.
Uwagi
EN
1. The authors would like to thank the Iran Alloy Steel Company, Yazd-Iran, for providing the steels used in this research.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c573eb5f-6410-4226-8479-11964e55377d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.