PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heterostructures with self-organized quantum dots of Ge on Si for optoelectronic devices

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper an analysis of tendencies of Ge on Si quantum dots nanoheterostructures’ usage in different optoelectronic devices such as, for example, solar cells and photodetectors of visible and infra-red regions is carried out; a complex mathematical model for calculation of dependency on growth conditions of self-organized quantum dots of Ge on Si grown using the method of molecular beam epitaxy parameters is described. Ways of segregation effect and underlying layers’ influence are considered. It is shown that for realization of good device characteristics quantum dots should have high density, small sizes, uniformity, and narrow size distribution function. The desirable parameters of arrays of square and rectangular quantum dots for device application are attainable under certain growth conditions.
Twórcy
  • National Research Tomsk State University, 36 Lenin Ave., 634050 Tomsk, Russia
  • National Research Tomsk State University, 36 Lenin Ave., 634050 Tomsk, Russia
  • National Research Tomsk State University, 36 Lenin Ave., 634050 Tomsk, Russia
  • National Research Tomsk State University, 36 Lenin Ave., 634050 Tomsk, Russia
  • National Research Tomsk State University, 36 Lenin Ave., 634050 Tomsk, Russia
  • Institute of Semiconductor Physics, 13 Ac. Lavrientiev Ave., 630090 Novosibirsk, Russia
  • National Research Tomsk State University, 36 Lenin Ave., 634050 Tomsk, Russia
  • Institute of Semiconductor Physics, 13 Ac. Lavrientiev Ave., 630090 Novosibirsk, Russia
Bibliografia
  • 1. A.V. Voitsekhovskii, D.V. Grigor’ev, A.P. Kokhanenko, O.P. Pchelyakov, A.V. Dvurechenskii, and A.I. Nikiforov, “Ge/Si nanoheterostructures with ordered Ge quantum dots for optoelectronic applications”, Russian Physics Journal 53, 943 (2011).
  • 2. K.L. Wang, D. Cha, J. Liu, and C. Chen, “Ge/Si self-assembled quantum dots and their optoelectronic device applications”, Proc. IEEE 95, 1866 (2007).
  • 3. Zh.I. Alferov, “The history and future of semiconductor heterostructures”, Semiconductors 32, 1 (1998).
  • 4. O.P. Pchelyakov, Y.B. Bolkhovityanov, A.V. Dvurechenski, L.V. Sokolov, A.I. Nikiforov, A.I. Yakimov, and B. Voigtländer, “Silicon-germanium nanostructures with quantum dots: Formation mechanisms and electrical properties”, Semiconductors 34, 1229 (2000).
  • 5. A.V. Voitsekhovskii, A.P Kokhanenko, A.G. Korotaev, and S.N. Nesmelov, “Photoelectric characteristics of PtSi-Si Schottky barrier with boron heavily-doped nanolayer”, Proc. SPIE 4413, 387 (2001).
  • 6. O.P. Pchelyakov, A.V. Dvurechensky, A.V. Latyshev, and A.L. Aseev, “Ge/Si heterostructures with coherent Ge quantum dots in silicon for applications in nanoelectronics”, Semicond. Sci. Tech. 26, 014027 (2011).
  • 7. O.G. Schmidt, U. Denker, M. Dashiell, N.Y. Jin-Phillipp, K. Eberl, R. Schreiner, H. Gräbeldinger, H. Schweizer, S. Christiansen, and F. Ernst, “Laterally aligned Ge/Si islands: a new concept for faster field-effect transistors”, Mater. Sci. Eng. B89, 101 (2002).
  • 8. A.I. Yakimov, A.V. Dvurechenskii, V.V. Kirienko, and A.I. Nikiforov, “Ge/Si quantum-dot metal-oxide-semiconductor field-effect transistor”, Appl. Phys. Lett. 80, 4783 (2002).
  • 9. L.K. Nanver, V. Jovanovic, C. Biasotto, J. Moers, J, D. Gruetzmacher, J.J. Zhang, N. Hrauda, M. Stoffel, F. Pezzoli, O.G. Schmidt, L. Miglio, H. Kosina, A. Marzegalli, G. Vastola, G. Mussler, J. Stangl, G. Bauer, J. van der Cingel, and E. Bonera, “Integration of MOSFETs with SiGe dots as stressor material”, Solid-State Electron. 60, 75 (2011).
  • 10. A.I. Yakimov, A.V. Dvurechenskii, and A.I. Nikiforov, “Germanium Self-Assembled Quantum Dots in Silicon for Nano- and Optoelectronics”, J. Nano- and Optoelectron. 1, 119 (2006).
  • 11. R. Wei, N. Deng, H. Dong, M. Ren, L. Zhang, P. Chen, and L. Liu, “Ge quantum-dot polysilicon emitter heterojunction phototransistors for 1.31-1.55 μm light detection”, Mater. Sci. Eng. B147, 187 (2008).
  • 12. M. Elcurdi, P.Boucaud, and S. Sauvage, “Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots”, Appl. Phys. Lett. 80, 509 (2002).
  • 13. S. Tong, J.L. Liu, J. Wan, and K.L. Wang, “Normal-incidence Ge quantum-dot photodetectors at 1.5 μm based on Si substrate”, Appl. Phys. Lett. 80, 1189 (2002).
  • 14. G. Masini, L. Colace, and G. Assanto, “2.5 Gbit/s polycrystalline germanium-on-silicon photodetector operating from 1.3 to 1.55 μm”, Appl. Phys. Lett. 82, 2524 (2003).
  • 15. A. Elving, G.V. Hansson, and W.-X. Ni, “SiGe (Ge-dot) heterojunction phototransistor for efficient light detection at 1.3-1.55 μm”, Physica E16, 528 (2003).
  • 16. A.I. Yakimov, A.V. Dvurechenskii, V.V. Kirienko and A.I. Nikiforov, “Ge/Si Photodiodes and Phototransistors with Embedded Arrays of Germanium Quantum Dots for Fiber-Optic Communication Lines”,Phys. Solid State 47, 34 (2005).
  • 17. M. Morse, O. Dosunmu, T. Yin, Y. Kang, G. Sarid, E. Ginsburg, R. Cohen, and M. Zadka, “Progress towards competitive Ge/Si photodetectors”, Proc. SPIE 6996, 699614 (2008).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c56d34d9-0fa3-4bf9-ab47-f725b812f6bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.