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1. Introduction 

System reliability, as a quality index, is the capability 

to complete the specified functions accurately in 

mutually harmonious manner under the specified 

conditions within specified period. The quality and 

reliability engineering facilitates the specification of 

the system reliability function on the ground of 

probability and statistics theory. The Toyota crisis 

does not only tear off the brand image of quality but 

also shake the belief of existing quality and reliability 

engineering practices and the underlying probability 

and statistics theory, which treat the random 

uncertainty. Uncertainty in real world is intrinsic and 

diversified in formality. For example, the vagueness is 

another form of uncertainty, which is more and more 

aware of in today’s industrial environments, just as 

Carvalho and Machado [1] commented, “In a global 

market, companies must deal with a high rate of 

changes in business environment. The parameters, 

variables and restrictions of the production system are 

inherently vagueness.” Therefore quality and 

reliability engineering is no longer a blind exercise of 

applying the traditional techniques from existing 

probabilistic reliability engineering literature. 

The coexistence of randomness and other forms of 

uncertainty in reliability concept is intrinsic and 

inherent and therefore modern reliability analysis 

inevitably engages hybrid lifetime modeling.  

Accordingly, the methodology to solve the reliability 

of hybrid lifetime should be developed in terms of the 

basic concept of general uncertain measure theory.  

 

2. A review of uncertain measure theory 

Uncertain measure [6], [7] is an axiomatically defined 

set function mapping from a  -algebra of a given 

space (set) to the unit interval [0,1], which provides a 

measuring grade system of an uncertain phenomenon 

and facilitates the formal definition of an uncertain 

variable. 

Let   be a nonempty set (space), and  A  the  -

algebra on  . Each element, let us say, 

A ,  A A  is called an uncertain event. A 

number denoted as  A ,  0 1A  , is assigned to 

event  A A , which indicates the uncertain 
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measuring grade with which event  A A  occurs. 

The normal set function  A satisfies following 

axioms given by [6], [7]: 

 

Axiom 1. (Normality)   1  . 

 

Axiom 2. (Monotonicity)  is non-decreasing, i.e., 

whenever A B ,    A B . 

 

Axiom 3. (Self-Duality)   is self-dual, i.e., for any 

 A A ,     1cA A  .  

 

Axiom 4. ( - Subadditivity)  
11

i i

ii

A A
 
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 
 

 
  for 

any countable event sequence  iA . 

 

Definition 2.1. [6], [7] Any set function 

: 0,1A  satisfies Axioms 1-4 is called an 

uncertain measure. The triple , ,A  is called 

the uncertain measure space. 

 

Definition 2.2. [6], [7] An uncertain variable   is a 

measurable mapping, i.e.,      : , ,   A B , 

where  B  denotes the Borel  -algebra on 

 ,   . 

 

Remark 2.3. The fundamental difference between a 

random variable and an uncertain variable is the 

measure space on which they are defined. In the 

triples, the first two factors are similar in formation: 

the set and the - algebra on the set. However, the 

third factor in the triples: the measures defined on the 

- algebras are not similar. The former (i.e. the 

probability measure) obeys - additivity and the later 

(i.e. the uncertain measure) obeys - subadditivity.  

The way for specifying measure inevitably has 

impacts on the behaviour of the measurable function 

on the triple.  

 

Definition 2.4. [7] Let  be an uncertain variable on 

, ,A . A nonnegative, non-decreasing function 

 : 0,1    if 

           

   ( ) :x x  (1) 

is called as uncertainty distribution for the uncertain 

variable  . 

 

Definition 2.5.  [7] (Identification function of the first 

kind) If function :  satisfying  

 

       sup 1
x y

x y 


   (2) 

 

Then,    is termed as the identification function of 

the first kind for an uncertain variable   . 

Theorem 2.6. [7] If     is an identification function of 

the first kind, then for B  , an uncertain measure 

is defined by 

 

    
   

   

sup if sup 0.5

.
1 sup if sup 0.5

c

x B x B

x Bx B

x x

B
x x

 

 

 






 
 



 (3) 

 

Proof: The set function  satisfies normality, 

monotonicity, self-duality and - sub-additivity with 

the support of equality :     sup 1
x y

x y 


  , thus it 

is an uncertain measure. An uncertain variable   

mapping from the uncertain space   , , A  to 

  , ,B  . 

  

3. Hybrid variable concept 

Since [9], [10] proposed fuzzy set theory, fuzzy 

random fuzzy set, a special case of hybrid variable,  

soon proposed by [4]. [5] defined that a random fuzzy 

variable, another special case of hybrid variable, is a 

mapping from the credibility space ,2 ,Cr  to a 

set of random variables.  Let us start with a general 

hybrid variable definition. 

 
Definition 3.1. A hybrid variable is a real-valued 

measurable mapping, i.e.,     : , ,  A B  . 

  
Remark 3.2. It is obvious that the order of the 

formation of a hybrid variable does matter. For 

example, Random fuzzy variable [6] and fuzzy 

random variable [4] are two types of hybrid variable, 

even with the same component uncertain variables. 

Therefore, it is necessary to define them separately 

when specifying the hybrid variable with different 

uncertain variables. 

 

Definition 3.3. A random-uncertain hybrid variable is 

a measurable mapping  from product space 

, , , ,PrA F  into , ,B , which 

is called as hybrid variable of Type I; An uncertain-
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random hybrid variable is a measurable mapping 

 from product space , ,Pr , ,F A   

into , ,B , which is called hybrid variable of 

Type II.  

In the remaining of the paper, we only deal with 

hybrid variable of Type I, i.e., random-uncertain 

hybrid variable. Therefore, for convenience we simply 

use the term hybrid variable. For reliability engineers 

and managers armed with introductory probability and 

statistics, this definition will be difficult to 

understand. For a more intuitive understanding, we 

would like to present a definition similar to that of 

stochastic process in probability theory and expect 

readers who are familiar with the basic concept of 

stochastic processes can understand our comparative 

definition.   

 

Definition 3.4. A hybrid variable (of Type I), denoted 

by 
  ,X
 

   , is a collection of random 

variables X  defined on the common probability 

space  , Pr F,  and indexed by an uncertain 

variable     defined on the uncertainty space 

, ,A .  

Similar to the interpretation of a stochastic process 

 ,tX X t   , a hybrid variable is also a 

bivariate mapping from  , F A  to the space 

 ,B . As to the index set, in stochastic process 

theory, index set used is referred to as time typically, 

which is a positive (scalar variable), while in the 

random fuzzy variable theory, the “index” is an 

uncertain variable  . Using uncertain parameter as 

index is not starting in hybrid variable definition. In 

stochastic process theory we already know that the 

stochastic process   ,X X
 

   uses stopping 

time ,  , which is an random variable as 

its index.  

           

4. Average chance measure and average 

chance distribution for a hybrid variable 
 

Hybrid variable can be quantified in terms of chance 

measure concept, see [5], [6], and [8].  

 

Definition 4.1. Let   be a random-uncertain hybrid 

variable and B a Borel set of real numbers. Then the 

chance measure of random fuzzy event  B  is a 

function mapping from  0,1  to 0,1 ,  

Ch sup inf Pr :
AA

B B  (4) 

However, we notice the potential mathematical 

complexity associated with the chance measure 

formulation. Therefore, it is necessary to explore a 

convenient way to deal with the chance measure 

specification. Recall that in probability theory, the 

distribution of a random variable   on probability 

space , ,PrA ,  F   links to the probability 

measure of event :  x A  

   Pr : .  F x x  (5) 

In random-uncertain hybrid variable theory, we may 

say that that average chance measure plays an 

equivalent role similar to probability measure, 

denoted as Pr , in probability theory. 

 

Definition 4.2. Let  be a random-uncertain hybrid 

variable, then the average chance measure, denoted 

as ch , of a random-uncertain event 

: x , is  

1

0

ch |Pr dx x  (6) 

Then function  is called as average chance 

distribution if and only if 

   chx x  (7) 

Now, we are required to establish a theoretical 

framework in terms of average chance measure 

concepts. Once the average chance measure for the 

basic event form  x   is given, then the average 

chance measure for any event A  should be 

established in terms of the basic event  x  . In this 

way, we may define average chance measure for an 

arbitrary event A . The triple space  , ch F A,  

is called the average chance space. 

 

Proposition 4.3. Let ch  be an average chance 

measure on a product measure space 

    ,   F A . Then 

(i) ch 0  and ch 1; 

(ii) (Normality) A F A ,  0 ch 1A ;  

(iii) (Self-Duality) For A F A , then 

ch 1 chcA A  
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(iv) (Weak monotone increasing) For 

, ,A B   A B F A ,  ch chA B ;  

(v) (Semi-Continuity) For ,nA ,A F A  

1,2,n ,  if nA A , then 

   lim ch ch
n

n
A A

A A  (8) 

if and only if  one of the following conditions holds: 

(a) 0.5 & n nA A A ,  

(b) lim 0.5 & n n
n

A A A ,  

(c) 0.5 & n nA A A , and  

(d) lim 0.5 & n n
n

A A A . 

(vi) (Sub-Additivity) For , ,A B   A B F A ,  

   ch ch chA B A B  (9) 

 

Proposition 4.4. Let  be average chance 

distribution of (random-uncertain) hybrid variable 

on the chance measure space , ,chF A . 

Then 

(i) 0  and 1 ; 

(ii) For ,x , 0 1x ; 

(iii)Nonnegative real-valued function  is called 

average chance density for a (random-uncertain) 

hybrid variable  if for 0,x  x and 

   d

x

x u u  (10) 

         

5. Construction of random-uncertain hybrid 

variable 

Liu [5] mentioned an exponentially distributed 

random fuzzy variable   has a density function 

    
1

exp if 0

0 otherwise

x
x

x  

  
   

   



 (11) 

if the value of   is assumed to be a fuzzy variable, 

then   is a random fuzzy variable. Similarly, let 

parameter   be an uncertain variable following a 

distribution function    , and the probability 

density is defined by Equation (11), then the random-

uncertain hybrid variable   is said to be 

exponentially distributed. This example hints a 

constructive definition for specifying hybrid variable, 

i.e., random-uncertain variable or equivalently, the 

average chance distribution. 

 

Definition 5.1. Let ; ,F x  be a family 

of probability distributions on the probability space 

, ,PrA  with a common uncertain parameter   on 

the uncertain measure space , ,A , then the 

average distribution derived from , ,F x  

defines a (random-uncertain) hybrid variable .  

 

Theorem 5.2. Let   be a random-uncertain hybrid 

variable. If the expectation  0PE      exists for any 

given 0  , then  PE      is an uncertain 

variable.  

 

6. Random uncertain hybrid lifetimes 

Analyzing hybrid lifetimes, or survival times, or 

failure times, is the focus of lifetime modeling and 

analysis under randomness and general uncertainty 

co-existence environments. Different from the 

statistical lifetime modeling and analysis, where the 

random lifetimes are concerned, also different from 

the uncertainty lifetime modeling and analysis, where 

the uncertainty lifetimes are concerned, hybrid 

lifetime modeling analysis provides a general 

guideline with a rigorous theoretical foundation.  

A (random-uncertain) hybrid lifetime, denoted by , 

which is a special case of hybrid (of Type I), takes 

only a positive real values. In other words, hybrid 

lifetime is a bivariate mapping from  , F  

to the space   ,B 
.  

 

6.1. Basic construction of continuous hybrid 

lifetimes 

In statistical lifetime modeling and analysis, the 

probability distribution contains the full information 

on system lifetime and there are many related 

concepts, particularly, hazard function reveals an 

aspect of lifetime distribution, which links to the 

physical structure of a system.  

 

Theorem 4.1. Let  be a continuous hybrid lifetime 

having probability distribution function ;F t , 

where the uncertain parameter  is defined on the 
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uncertain measure space , ,A . Then function 

; ;t F t  can uniquely define the hybrid 

lifetime  if the operator or function  is invertible.  

Table 1 lists four commonly used operators or 

functions. 

 
Table 1.  Examples of operators or functions 

 
Name Form of ;t   

Survival 

function 

; 1 ;F t F t  ; 1 ;F t F t  

Density 

function 

; d ; df t F t t  

0

; ; d

t

F t f u u  

Hazard 

function 

( ; ) 1 ;h t f t F t  
0

; 1 exp - ; d
t

F t h u u  

Moment 

generating 

function 

0
; d ;tm e F t  0

1
; ; d d

2

t i
su

i
F t m s e s u

i
 

 

6.2. Continuous hybrid lifetime models 

In statistical lifetime modeling and analysis, the 

elementary lifetime models are exponential, Weibull, 

Log-normal, gamma, Cox-Lewis, bathtub, and etc. 

These are essential for the construction of hybrid 

lifetimes. Table 2 lists these models. 

 

Table 2. Commonly used distributional lifetime 

models 

Name Probability density & hazard function 

Exponential  density exp t  

hazard  

Weibull density 1
expt t  

hazard 1
t  

Extreme  

- value 

density         1 exp exp expu t b u t b u    

hazard     1 expu t b u  

Log-Normal density 2 21 2 exp ln 2t t

 

hazard 
2 21 2 exp ln 2 1 lnt t t

 

Gamma density 
1 tt e  

hazard 
1

1 ,tt e I t  

Bathtub density 1 1 1
exp exp expt t t  

hazard 
1 1
expt t  

 

In Table 2, ,I t  denotes the incomplete gamma 

function of the first-type and  represents the 

cumulative distribution of a standard normal variable. 

 

6.3. Proportional hazard models 

Covariate models play very important roles in lifetime 

analysis. Cox [2] initiated proportional hazards 

(abbreviated as PH) model as following: 

   
0; , ; Th t h t y  (12) 

where 0 ;h t is called the baseline hazard function 

having a fuzzy parameter  defined on the credibility 

measure space , ,A , while :  with 

   0 1 1

T

p py y y  (13) 

where 11, , ,
T

py y y is covariate vector and 

0 1, , ,
T

p is covariate effect parameter 

vector. A typically function of :  used is 

the exponential function 
xx e . It is easy to show 

that the accumulated hazard if covariate y is not time-

dependent is 

   
0; , ; .

T yH t H t e  (14) 

And therefore the average chance distribution with 

covariate y is 

2

1

1 2 0 1

0

, , : ; ln 1 d
T y

t y H t e  (15) 

where covariate y is assumed to be uncertain 

distributed but parameter  is assumed to be 

determined. Other options are also possible to be 

formulated. 

 

7. Exponentially distributed hybrid lifetimes 

The purpose to have this section is double-folded: (a) 

exponential hybrid lifetime is an important member 

for system lifetime analysis; (b) the arguments for 

deriving the average chance distribution are 

demonstration in line with hybrid variable reliability 

analysis. Bearing this agenda in mind, the following 

step-by-step developments will be very beneficial.  

Let us use exponentially distributed hybrid lifetime 

which has probability density 

    
0 0

;
0t

t
f t

e t


 


 


 (16) 
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where the uncertain parameter has a trapezoidal 

identification function [7] 

   

2

0.5       

2

0       otherwise

x a
a x b

b a

b x c
x

d x
c x d

d c

 (17) 

 

Note that  

       
Pr 1

t
t e

 
      (18) 

Therefore event : Pr t  is an 

uncertain event and is equivalent to the uncertain 

event : ln 1 t . As a critical 

toward the derivation of the average chance 

distribution, it is necessary to calculate the uncertain 

measure for the uncertain event 

: ln 1 t , i.e., obtain the 

expression for 

   : ln 1 t  (19) 

For the trapezoidal uncertain variable (parameter), , 

the uncertain  measure takes the form 

sup if sup 0.5

1 sup if sup 0.5
c

x B x B

x Bx B

x x

B
x x

  

i.e., the uncertain parameter  follows the uncertainty 

distribution:  

   

 

 

0 if 

if 
2

.0.5 if 

2
if c

2

1 if 

x a

x a
a x b

b a

x x b x c

x d c
x d

d c

x d







  




     
  
  






 (20) 

Accordingly, the range for integration with respect to 

can be determined as shown in Table 3. Recall that 

the expression of ln 1x t appears in 

Equations (19), which facilitates the link between 

intermediate variable   and average chance measure. 

 

Table 3.  Range analysis for   

 

Range for  and credibility measure expression 

x  

x a

 

Range for  0 1 ate  

: ln 1 t  1 

a x b  Range for  1 1at bte e  

: ln 1 t  1 2x a b a  

b x c  Range for  1 1bt cte e  

: ln 1 t  0.5 

c x d  Range for  1 1ct dte e  

: ln 1 t  2d x d c  

d x

 

Range for  1 1dte  

: ln 1 t  0 

 

The average chance distribution for the exponentially 

distributed hybrid lifetime is then derived by splitting 

the integration into five terms according to the range 

of   and the corresponding mathematical expression 

for the uncertain measure 

: ln 1 t , which is detailed in 

Table 3. Then the exponential random fuzzy lifetime 

has an average chance distribution function:  

   

1

0

t = : ln 1 d

       1
2 2

bt at dt ct

t

e e e e

b a t d c t

 (21) 

and the average chance density is 

   
2

2

t =
2 2

       
2 2

at bt bt at

ct dt ct dt

e e be ae

b a t b a t

e e ce de

d c t d c t

 
(22) 

Similar to the probabilistic reliability theory, we 

define a reliability function or survival function for a 

random fuzzy lifetime and accordingly name it as the 

average chance reliability function, which is defined 

accordingly as 

   =1R t t  (23) 

Then, for exponential random fuzzy lifetime, its 

average chance reliability function is 

   =
2 2

at bt ct dte e e e
R t

b a t d c t
 (24) 

In standard statistical lifetime modelling and analysis 

reliability function reveals the system functioning 

behaviour. The average chance reliability function 

should play similar roles in hybrid lifetime modelling 

and analysis. In order to gain an intuitive perceptions 

on the average chance reliability function, let us 

assume that the trapezoidal identification function 
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defined by (0.1, 0.15, 0.25, 0.30), i.e., the parameters 

for specifying the identification function 

are 0.1,  0.15a b , 0.25, 0.30c d . For 

comparison purpose, we define an exponentially 

distributed random lifetime with fixed valued 

parameter, 0.20, which is obtained by 

   0.20m E  (25) 

Then the reliability function for the exponentially 

distributed random lifetime with parameter 

0.20m  is  

  ;0.20 exp 0.2R t t  (26) 

The corresponding average chance reliability function, 

  ;tR : 

10 10
; =

at bt ct dte e e e
R t

t t
 (27) 

Figure 1 gives a comparison between ;R t  and 

;0.20R t . 

 

0 10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t

R(t)

 
 
Figure 1. Exponential hybrid lifetime average chance 

reliability ;R t  (Red), corresponding exponential 

lifetime reliability ;0.20R t  (Blue), and the 

difference function ; , ;0.20d R t R t  (Sienna) 

 
Intuitively, we can see that given two systems: the 

first one is an exponentially distributed hybrid system 

with trapezoidal uncertain distributed parameter 

0.10,0.15,0.25,0.30  and the second one is an 

exponentially distributed random system with 

parameter 0.20m , the first one enjoys a higher 

reliability than that of the second one. Definitely, a 

rigorous mathematical proof should be pursued before 

stating this impression as a general statement. 

However, the purpose for us to develop hybrid 

lifetime analysis theory is a serious effort to facilitate 

a foundation for analyzing reliability data collected 

from system performance.  

 

7. Concluding Remarks 

In this paper, we develop a framework for modeling 

hybrid lifetimes (of Type I) and the average chance 

distribution as well as the average chance reliability. 

The models are constructive. We use exponentially 

distributed hybrid lifetime with a trapezoidal 

identification function as an example to illustrate the 

model developments on hybrid lifetimes. [3] 

demonstrated hybrid variable theory in repairable 

modeling, although in random fuzzy context. 

However, many research work need to be done, for 

example, the parameter estimation, the asymptotic 

distribution for the estimated parameters, the small 

sample asymptotic theory, etc. 
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