Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this study was to evaluate the effect of the not activated (unmodified) montmorillonite (MMT) filler on the antibacterial properties of polymer nanocomposites with a biodegradable polylactide (PLA) matrix. The subject of research was selected to verify the reports on the lack of antibacterial properties of unmodified montmorillonite in nanocomposites and to investigate the potential condition of their manufacturing which are decisive for the resulting properties. Evaluation of antibacterial and mechanical properties of both the starting materials and the obtained nanocomposites filled with layered silicates, as well as the wettability of the materials measured by a sitting drop method, was made on samples in the form of a film. The results show that the surface wettability of the polymer nanocomposites did not exhibit significant change compared to the film of neat PLA. However, a significant improvement in the mechanical and antimicrobial properties of the nanocomposite films obtained in a specific solvent casting process of the nanocomposite preceded by exfoliation of the film in an ultrasonic homogenizer was demonstrated. The antibacterial activity against Gram-positive bacteria Staphylococcus aureus and Enterococcus faecalis was also observed, and moreover, the montmorillonite-containing films revealed a zone of inhibition of bacterial growth when tested against the lactose-positive bacteria of the Enterobacteriaceae family, which are present in the waste water. The advantageous properties of the obtained PLA/MMT nanocomposites suggest, that the unmodified montmorillonite may be potentially used as filler for polymer films in the packaging industry.
Czasopismo
Rocznik
Tom
Strony
25--33
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Krakow, Poland
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Krakow, Poland
autor
- The Water and Sewage Limited Liability Company, The Water and Sewage Analysis Laboratory, Rybnik, Poland
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Krakow, Poland
autor
- The Water and Sewage Limited Liability Company, The Water and Sewage Analysis Laboratory, Rybnik, Poland
Bibliografia
- [1] AKBARI A., MAJUMDER M., TEHRANI A., Chapter: Handbook of Polymer Nanocomposites. Processing, Performance and Application, Springer, Berlin Heidelberg, 2015, 283-297.
- [2] ALLANSON A., CURRY R., UNKLESBAY N., IANNOTTI E., ELLERSIECK M., Effect of soluble polylactic acid during refrige rated storage of ground meats inoculated with Escherichia coli O157:H7, J. Food Saf., 2000, Vol. 20, 13-25.
- [3] ARIYAPITIPUN T., MUSTAPHA A., CLARKE A.D., Survival of Listeria monocytogenes Scott A on vacuum – packaged raw beef treated with polylactic acid, lactic acid, and nisin, J. Food Prot., 2000, Vol. 63, 131-136.
- [4] BARTKOWIAK-JOWSA M., BĘDZIŃSKI R., SZARANIEC B., CHŁOPEK J., Mechanical, biological, and microstructural properties of biodegradable models of polymeric stents made of PLLA and alginate fibers, Acta Bioeng. Biomech., 2011, Vol. 13, 21-28.
- [5] BUSOLO M. A., FERNANDEZ P., OCIO M. J., LAGARON J. M., Novel silver-based nanoclay as an antimicrobial in poly-lactic acid food packaging coatings, Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2010, Vol. 27, 1617-1626.
- [6] CHIENG B. W., IBRAHIM N. A., WAN YUNUS W. M. Z., Optimization of tensile strength of poly(lactic-acid)-graphene nanocomposites using response surface methodology, Polym. Plast. Technol. Eng., 2012, Vol. 51, 791-799.
- [7] DARIE R. N., PÂSLARU E., SDROBIS A., PRICOPE G. M., HITRUC G.E., POIATĂ A., BAKLAVARIDIS A., VASILE C., Effect of nanoclay hydrophilicity on the poly(lactic acid)/clay nanocomposites properties, Ind. Eng. Chem. Res., 2014, Vol. 53, 7877-7890.
- [8] GARLOTTA D., DOANE W., SHOGREN R., LAWTON J., WILLETT J. L., Mechanical and thermal properties of starch-filled Poly(D,L-lactic acid)/Poly(hydroxyester ether) biodegradable blends, J. Appl. Polym. Sci., 2003, Vol. 88, 1775-1786.
- [9] LANGER R., PEPPAS N.A., Advances in biomaterials, drug delivery, and bionanotechnology, AIChE Journal, 2003, Vol. 49, 2990-3006.
- [10] LIU G., SONG Y., WANG J., ZHUANG H., MA L., LI C., LIU Y., ZHANG J., Effects of nanoclay type on the physical and antimicrobial properties of PVOH-based nanocomposite films, LWT-Food Sci. Technol., 2014, Vol. 57, 562-568.
- [11] LIU L. S., FINKENSTADT V. L., LIU C.-K., JIN T., FISHMAN H.L., HICKS K.B., Preparation of poly(lactic acid) and pectin composite films intended for applications in antimicrobial packaging, J. Appl. Polym. Sci., 2007, Vol. 106, 801-810.
- [12] LV G., PEARCE C. W., GLEASON A., LIAO L., MacWILLIAMS M. P., LI Z., Influence of montmorillonite on antimicrobial activity of tetracycline and ciprofloxacin, J. Asian Earth Sci., 2013, Vol. 77, 281-286.
- [13] MAITI P., YAMADA K., OKAMOTO M., UEDA K., OKAMOTO K., New polylactide/layered silicate nanocomposites: role of organoclays, Chem. Mater., 2002, Vol. 14, 4654-4661.
- [14] MARTINEZ-SANZ M., LOPEZ-RUBIO A., LAGARON J.M., Optimization of the dispersion of unmodified bacterial cellulose nanowhiskers into polylactide via melt compounding to significantly enhance barrier and mechanical properties, Biomacromolecules, 2012, Vol. 13, 3887-3899.
- [15] MUSTAPHA A., ARIYAPITIPUN T., CLARKE A.D., Survival of Escherichia coli O157:H7 on vacuum-packaged raw beef treated with polylactic acid, lactic acid, and nisin, J. Food Sci., 2002, Vol. 67, 262-266.
- [16] PARK H. M., LI Y., JIN C.Z., PARK C.Y., CHO W. J., HA C. S., Preparation and properties of biodegradable thermoplastic starch/clay hybrids, Macromolec. Mater. Eng., 2002, Vol. 287, 553-558.
- [17] PETERSEN K., NIELSEN P.V., BERTELSEN G., LAWTHER M., OLSEN M. B., NILSSON N. H., MORTENSEN G., Potential of bio-based materials for food packaging, Trends Food Sci. Technol., 1999, Vol. 10, 52-68.
- [18] RAPACZ-KMITA A., STODOLAK-ZYCH E., SZARANIEC B., GAJEK M., DUDEK P., Effect of clay mineral on the accelerated hydrolytic degradation of polylactide in the polymer/clay nanocomposites, Mater. Letters, 2015, Vol. 146, 73-76.
- [19] REDDY M. M., VIVEKANANDHAN S., MISRA M., BHATIA S. K., MOHANTY A. K., Biobased plastics and bionanocomposites: current status and future opportunities, Progr. Polym. Sci., 2013, Vol. 38, 1653-1689.
- [20] RHIM J.-W., HONG S.-I., PARK H. M., NG P.K., Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity, J. Agric. Food Chem., 2006, Vol. 9, 5814-5822.
- [21] RHIM J.-W., HONG S.-I., HA C.-S., Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films, LWT-Food Sci. Technol., 2009, Vol. 42, 612-617.
- [22] SELIGRA P. G., LAMANNA M., FAMÁ L., PLA-fMWCNT Bionanofilms With High Modulus And Great Properties To Apply In Packaging And Biomedicine, Proc. Mater. Sci., 2015, Vol. 8, 383-390.
- [23] SUYATMA N. E., COPINET A., TIGHZERT L., COMA V., Mechanical and barrier properties of biodegradable films made from chitosan and poly(lactic acid) blends, J. Polym. Environm., 2004, Vol. 12, 1-6.
- [24] WEBER C. J., HAUGAARD V., FESTERSEN R., BERTELSEN G., Production and applications of biobased packaging materials for the food industry, Food Addit. Contam., 2002, Vol. 19, 172-177.
- [25] ZHU A., DIAO H., RONG Q., CAI A., Preparation and properties of polylactide–silica nanocomposites, J. Appl. Polym. Sci., 2010, Vol. 116, 2866-2873.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5686cd4-60a9-4413-86bc-ede4c6d4b660