Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Alumina rich fly ash (ARFA) has been regarded as the alternative to bauxite in China. Hydrochloric acid process could be favored for alumina extraction, necessitating calcination of aluminum chloride hexahydate (ACH). In this work, the TGA/DSC results of ACH were used to suggest calcination procedures. Two-step calcinations of 200-1000°C and 350-1000°C did not increase the surface area of alumina, by comparison with one step 1000°C calcination, and a slow heating rate could improve the surface area. Calcination temperature was increased from 950 to 1250°C in a step of 50°C, and XRD, XRF, BET and gas pycnometer were used to characterize the alumina from calcinated ACH. Consistent results were obtained by these different techniques, and two groups of impurities were identified and related to alumina purity and surface area. By comparison with clays, it was suggested to remove impurities such as MgO, Na2 O, K2 O, P2 O5 and SO3 in hydrochloric acid leaching of ARFA.
Wydawca
Czasopismo
Rocznik
Tom
Strony
235--240
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- National Institute of Clean-And-Low-Carbon Energy, P. O. Box 001 Shenhua Nice, Xiaotangshan Future Science & Technology City, Changping District, Beijing 102211, Pr China
Bibliografia
- [1] J. A. Elsele, D. J. Bauer, D. E. Shanks, Ind. Eng. Chem. Prod. Res. Dev. 22 (1), 105-110 (1983).
- [2] K. Y. Park, J. Jeong, Ind. Eng. Chem. Res. 35 (11), 4379-4385 (1996).
- [3] Z. T. Yao, M. S. Xia, P. K. Sarker, T. Chen T, Fuel 120, 74-85 (2014).
- [4] M. S. R. Sarker, M. Z. Alam, M. R. Qadir, M. A. Gafur, M. Moniruzzaman, Int. J. Miner. Metall. Mater. 22 (4), 429-436 (2015).
- [5] Y. Guo, H. Lv, X. Yang, F. Cheng, Sep. Purif. Technol. 151, 177-183 (2015).
- [6] K. Binnemans, P. T. Jones, B. Blanpain, T. V. Gerven, Y. Pontikes, J. Clean. Prod. 99, 17-38 (2015).
- [7] A. N. Løvik, E. Restrepo, D. B. Müller, Environ. Sci. Technol. 49 (9), 5704-5712 (2015).
- [8] V. V. Seredin, Int. J. Coal Geo. 90-91, 1-3 (2012).
- [9] L. Zhao, H. Xiao, B. Wang, Q. Sun, J. Chem. 2016, article ID 8695890, 10 pages (2016).
- [10] G. Lü, T. Zhang, L. Wang, S. Ma, Z. Dou, Y. Liu, J. Cent. South Univ. 21 (12), 4450-4455 (2014).
- [11] T. Sato, Netsu Sokutei. 13 (3), 113-122 (1986).
- [12] D. Petzold, R. Naumann, J. Therm. Anal. 20 (1), 71-86 (1981).
- [13] R. Naumann, D. Petzold, F. Paulik, J. Paulik, J. Therm. Anal. 15 (1), 47-53 (1979).
- [14] M. Hartman, O. Trnka, O. Šolcová, Ind. Eng. Chem. Res. 44 (17), 6591-6598 (2005).
- [15] K. Y. Park, J.-K. Kim, J. Jeong, Y. Y. Choi, Ind. Eng. Chem. Res. 36 (7), 2646-2650 (1997).
- [16] K. Y. Park, Y.-W. Park, S.-H. Youn, S.-Y. Choi, Ind. Eng. Chem. Res. 39 (11), 4173-4177 (2000).
- [17] C. S. Sen, B. Santanu, J. Metall. Mater. Sci. 53 (4), 355-367 (2011).
- [18] D. Thirumala ikumarasamy, K. Shanmugam, V. Balasubramanian, J. Asian Ceram. Soc. 2 (4), 403-415 (2014).
- [19] J. Saukkoriipi, Theoretical study of the hydrolysis of aluminium complexes. PhD Dissertation, University of Oulu, Oulu, 2010.
- [20] K. Wefers, C. Misra, Oxides and hydroxides of aluminum, Technical Paper No. 19 Revised, Aluminum Company of America, 1987.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c567d082-8970-4adc-a2cc-4d5c440662b9