PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Calcination of Aluminum Chloride Hexahydrate (ACH) for Alumina Production: Implications for Alumina Extraction from Aluminum Rich Fly Ash (ARFA)

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Alumina rich fly ash (ARFA) has been regarded as the alternative to bauxite in China. Hydrochloric acid process could be favored for alumina extraction, necessitating calcination of aluminum chloride hexahydate (ACH). In this work, the TGA/DSC results of ACH were used to suggest calcination procedures. Two-step calcinations of 200-1000°C and 350-1000°C did not increase the surface area of alumina, by comparison with one step 1000°C calcination, and a slow heating rate could improve the surface area. Calcination temperature was increased from 950 to 1250°C in a step of 50°C, and XRD, XRF, BET and gas pycnometer were used to characterize the alumina from calcinated ACH. Consistent results were obtained by these different techniques, and two groups of impurities were identified and related to alumina purity and surface area. By comparison with clays, it was suggested to remove impurities such as MgO, Na2 O, K2 O, P2 O5 and SO3 in hydrochloric acid leaching of ARFA.
Twórcy
autor
  • National Institute of Clean-And-Low-Carbon Energy, P. O. Box 001 Shenhua Nice, Xiaotangshan Future Science & Technology City, Changping District, Beijing 102211, Pr China
Bibliografia
  • [1] J. A. Elsele, D. J. Bauer, D. E. Shanks, Ind. Eng. Chem. Prod. Res. Dev. 22 (1), 105-110 (1983).
  • [2] K. Y. Park, J. Jeong, Ind. Eng. Chem. Res. 35 (11), 4379-4385 (1996).
  • [3] Z. T. Yao, M. S. Xia, P. K. Sarker, T. Chen T, Fuel 120, 74-85 (2014).
  • [4] M. S. R. Sarker, M. Z. Alam, M. R. Qadir, M. A. Gafur, M. Moniruzzaman, Int. J. Miner. Metall. Mater. 22 (4), 429-436 (2015).
  • [5] Y. Guo, H. Lv, X. Yang, F. Cheng, Sep. Purif. Technol. 151, 177-183 (2015).
  • [6] K. Binnemans, P. T. Jones, B. Blanpain, T. V. Gerven, Y. Pontikes, J. Clean. Prod. 99, 17-38 (2015).
  • [7] A. N. Løvik, E. Restrepo, D. B. Müller, Environ. Sci. Technol. 49 (9), 5704-5712 (2015).
  • [8] V. V. Seredin, Int. J. Coal Geo. 90-91, 1-3 (2012).
  • [9] L. Zhao, H. Xiao, B. Wang, Q. Sun, J. Chem. 2016, article ID 8695890, 10 pages (2016).
  • [10] G. Lü, T. Zhang, L. Wang, S. Ma, Z. Dou, Y. Liu, J. Cent. South Univ. 21 (12), 4450-4455 (2014).
  • [11] T. Sato, Netsu Sokutei. 13 (3), 113-122 (1986).
  • [12] D. Petzold, R. Naumann, J. Therm. Anal. 20 (1), 71-86 (1981).
  • [13] R. Naumann, D. Petzold, F. Paulik, J. Paulik, J. Therm. Anal. 15 (1), 47-53 (1979).
  • [14] M. Hartman, O. Trnka, O. Šolcová, Ind. Eng. Chem. Res. 44 (17), 6591-6598 (2005).
  • [15] K. Y. Park, J.-K. Kim, J. Jeong, Y. Y. Choi, Ind. Eng. Chem. Res. 36 (7), 2646-2650 (1997).
  • [16] K. Y. Park, Y.-W. Park, S.-H. Youn, S.-Y. Choi, Ind. Eng. Chem. Res. 39 (11), 4173-4177 (2000).
  • [17] C. S. Sen, B. Santanu, J. Metall. Mater. Sci. 53 (4), 355-367 (2011).
  • [18] D. Thirumala ikumarasamy, K. Shanmugam, V. Balasubramanian, J. Asian Ceram. Soc. 2 (4), 403-415 (2014).
  • [19] J. Saukkoriipi, Theoretical study of the hydrolysis of aluminium complexes. PhD Dissertation, University of Oulu, Oulu, 2010.
  • [20] K. Wefers, C. Misra, Oxides and hydroxides of aluminum, Technical Paper No. 19 Revised, Aluminum Company of America, 1987.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c567d082-8970-4adc-a2cc-4d5c440662b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.