PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Corrosion of AISI1018 and AISI304 steel exposed to sulfates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research analyses the behavior of corrosion, durability, and quality of reinforced concrete samples coated with two different materials when exposed to contaminated soil with sulfates. The initial assessment involved evaluating the water absorption rate of the coating materials before and after exposure to a solution containing 3% Na2SO4 + 3% MgSO4 + 3% K2SO4 + 3% CaSO4 to determine their durability. The corrosion potential and linear polarization resistance technique were employed to measure the corrosion rate. Carbon steel and AISI 304 steel bars were tested alongside a stainless counter electrode. The findings indicate that the solvent-based coating exhibited superior performance, demonstrating reduced corrosion and water absorption rates. Additionally, the presence of sulfates led to the formation of a surface layer on the concrete, initially aiding in limiting water penetration. However, over time, this layer eventually causes damage to the concrete from the inside out.
Rocznik
Tom
Strony
58--70
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Department of Engineering Structures, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
  • Faculty of Civil and Engineering, Universidad Veracruzana, Veracruz, Mexico
  • Faculty of Civil and Engineering, Universidad Veracruzana, Veracruz, Mexico
  • Department of Engineering Structures, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
  • Department of Engineering Structures, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
Bibliografia
  • 1. ACI PRC-211.1-22 Selecting Proportions for Normal-Density and High - Density - Concrete - Guide. (2022). ACI Committee 211.
  • 2. Al-Zahrani, M. M., Al-Dulaijan, S. U., Ibrahim, M., Saricimen, H., & Sharif, F. M. (2002). Effect of waterproofing coatings on steel reinforcement corrosion and physical properties of concrete. Cement and Concrete Composites, 24(1), 127–137. https://doi.org/10.1016/S0958-9465(01)00033-6
  • 3. Anderson, A. P., & Wright, K. A. (1941). Permeability and Absorption Properties of Bituminous Coatings. Industrial & Engineering Chemistry, 33(8), 991–995. https://doi.org/10.1021/ie50380a008
  • 4. ASTM C29-C29M Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate. (2017). ASTM International.
  • 5. ASTM C33/C33M Standard Specification for Concrete Aggregates. (2018). ASTM International.
  • 6. ASTM C127-15 Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. (2016). ASTM International.
  • 7. ASTM C128-22 Standard Test Method for specific gravity and absorption of fine aggregate. (2023). ASTM International.
  • 8. ASTM C136-19 Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. (2020). ASTM International.
  • 9. ASTM C143/C1143M Standard Test Method for Slump of Hydraulic-Cement Concrete. (2020). ASTM International. https://doi.org/10.1520/C0143_C0143M-10
  • 10. ASTM C192/C192M-19 Standard Practice For Making And Curing Concrete Test Specimens In The Laboratory. (2020). ASTM International.
  • 11. ASTM C642-21 Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. (2022). ASTM International. www.astm.org
  • 12. ASTM C876-22b Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete. (2022). ASTM International.
  • 13. ASTM C1585-20 Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. (2020). ASTM International, 3.
  • 14. ASTM D4479-18 Standard Specification for Asphalt Roof Coatings-Asbestos-Free. (2018). ASTM International, 1–2.
  • 15. ASTM G59-97-20 Standard Test Method For Conducting Potentiodynamic Polarization Resistance Measurements. (2020). ASTM International.
  • 16. Baltazar-García, B. P., Baltazar-Zamora, D. F., Landa-Ruiz, L., Méndez, C. T., Santiago-Hurtado, G., Moreno-Landeros, V., Croche, R., & Baltazar-Zamora, M. A. (2023). Electrochemical Corrosion in Bars of AISI 304 Embedded in Concrete Immersed in Marine-Sulfated Environment. European Journal of Engineering and Technology Research, 8(1), 13–18. https://doi.org/10.24018/ejeng.2023.8.1.2942
  • 17. Baltazar-Zamora, M. A., Mendoza-Rangel, J. M., Croche, R., Gaona-Tiburcio, C., Hernández, C., López, L., Olguín, F., & Almeraya-Calderón, F. (2019). Corrosion Behavior of Galvanized Steel Embedded in Concrete Exposed to Soil Type MH Contaminated With Chlorides. Frontiers in Materials, 6(October), 1–12. https://doi.org/10.3389/fmats.2019.00257
  • 18. Bolooki Poorsaheli, H., Behravan, A., Tabatabaei Aghda, S. T., & Gholami, A. (2019). A study on the durability parameters of concrete structures reinforced with synthetic fibers in high chloride concentrated shorelines. Construction and Building Materials, 200, 578–585. https://doi.org/10.1016/j.conbuildmat.2018.12.155
  • 19. Camps, J. P., Jauberthie, R., & Rendell, F. (1999). The influence of surface absorption on sulfate attack. In R. K. Dhir & M. J. McCarthy (Eds.), Concrete Durability and Repair Technology (1st ed., Vol. 1, pp. 197–207). Thomas Telford Publishing. https://doi.org/https://doi.org/10.1680/cdart.28265
  • 20. Chavez, I. K. R., Calderón, S. L. P., & Ortiz, M. R. (2019). Uso de técnicas electroquímicas para determinar la resistencia a la corrosión localizada de un acero inoxidable súper dúplex UNS S-32760. Matéria (Rio de Janeiro), 24(1), e-12289. https://doi.org/10.1590/S1517-707620190001.0626
  • 21. Dwivedi, D., Lepková, K., & Becker, T. (2017). Carbon steel corrosion: a review of key surface properties and characterization methods. RSC Advances, 7(8), 4580–4610. https://doi.org/10.1039/C6RA25094G
  • 22. Ghosh, P., & Tran, Q. (2015). Influence of parameters on surface resistivity of concrete. Cement and Concrete Composites, 62, 134–145. https://doi.org/10.1016/j.cemconcomp.2015.06.003
  • 23. Gustavo, S., & Silvia, B. (2019). Corrosion en estructuras de hormigon armado. Ciencia e Investigacion, 4(69).
  • 24. Ibrahim, M., Kalimur Rahman, M., Megat Johari, M. A., Nasir, M., & Adeoluwa Oladapo, E. (2020). Chloride diffusion and chloride-induced corrosion of steel embedded in natural pozzolan-based alkali activated concrete. Construction and Building Materials, 262, 120669. https://doi.org/10.1016/j.conbuildmat.2020.120669
  • 25. Jarrah, N. R., Al-Amoudi, O. S. B., Maslehuddin, M., Ashiru, O. A., & Al-Mana, A. I. (1995). Electrochemical behaviour of steel in plain and blended cement concretes in sulphate and/or chloride environments. Construction and Building Materials, 9(2), 97–103. https://doi.org/10.1016/0950-0618(95)00002-W
  • 26. Landa-Sánchez, A., Bosch, J., Baltazar-Zamora, M. A., Croche, R., Landa-Ruiz, L., Santiago-Hurtado, G., Moreno-Landeros, V. M., Olguín-Coca, J., López-Léon, L., Bastidas, J. M., Mendoza-Rangel, J. M., Ress, J., & Bastidas, D. M. (2020). Corrosion Behavior of Steel-Reinforced Green Concrete Containing Recycled Coarse Aggregate Additions in Sulfate Media. Materials 2020, Vol. 13, Page 4345, 13(19), 4345. https://doi.org/10.3390/MA13194345
  • 27. Long, G., Xie, Y., & Tang, X. (2007). Evaluating deterioration of concrete by sulfate attack. Journal Wuhan University of Technology, Materials Science Edition, 22(3), 572–576. https://doi.org/10.1007/s11595-006-3572-6
  • 28. Millán Ramírez, G. P., Byliński, H., & Niedostatkiewicz, M. (2021). Deterioration and Protection of Concrete Elements Embedded in Contaminated Soil: A Review. Materials, 14(12), 3253. https://doi.org/10.3390/ma14123253
  • 29. Millán Ramírez, G. P., Byliński, H., & Niedostatkiewicz, M. (2022). Mechanical and physical assessment of epoxy, mineral, solvent-based, and water-soluble coating materials. Scientific Reports, 12(1), 13647. https://doi.org/10.1038/s41598-022-18022-0
  • 30. Ramezanianpour, A., & Riahi Dehkordi, E. (2017). Effect of Combined Sulfate-Chloride Attack on Concrete Durability - A Review. AUT Journal of Civil Engineering , 1(2), 103–110. https://doi.org/10.22060/ceej.2017.12315.5165
  • 31. Ramón, J. E., Castillo, Á., & Martínez, I. (2021). On-site corrosion monitoring experience in concrete structures: potential improvements on the current-controlled polarization resistance method. Materiales de Construcción, 71(344), e265. https://doi.org/10.3989/mc.2021.11221
  • 32. Santiago-Hurtado, G., Baltazar-Zamora, M. A., Galván-Martínez, R., López L, L. D., Zapata G, F., Zambrano, P., Gaona-Tiburcio, C., & Almeraya-Calderón, F. (2016). Electrochemical evaluation of reinforcement concrete exposed to soil type SP contaminated with sulphates. International Journal of Electrochemical Science, 11(6), 4850–4864. https://doi.org/10.20964/2016.06.31
  • 33. Santiago-Hurtado, G., Baltazar-Zamora, M., Galindo, A. D., Cabral, J. M., Estupiñán, F. L., Zambrano Robledo, P., Gaona-Tiburcio, C., Salinas Victoria Km, C., Nuevo León México, A., de Cv, A. S., & Pomona, F. (2013). Anticorrosive Efficiency of Primer Applied in Carbon Steel AISI 1018 as Reinforcement in a Soil Type MH. In Int. J. Electrochem. Sci (Vol. 8). www.electrochemsci.org
  • 34. Song, Z., Jiang, L., Liu, J., & Liu, J. (2015). Influence of cation type on diffusion behavior of chloride ions in concrete. Construction and Building Materials, 99, 150–158. https://doi.org/10.1016/j.conbuildmat.2015.09.033
  • 35. Stanish, K. D., Hooton, R. D., & Thomas, M. D. A. (2020). Testing the Chloride Penetration Resistance of Concrete: A Literature Review. https://www.researchgate.net/publication/237321599_Testing_the_Chloride_Penetration_Resistance_of_Concrete_A_Literature_Review
  • 36. Stern, M., & Geary, L. (1957). Electrochemical Polarization. Theoretical analysis of the shape of polarization curves. Journal of Electrochemical Society, 104, 56–63. https://doi.org/http://dx.doi.org/10.1149/1.2428496
  • 37. Tan, Y., Yu, H., & Wu, C. (2020). Investigation on the corrosion behavior of steel embedded in basic magnesium sulfate cement concrete: An attempt and challenges. ACS Omega, 5(43), 27846–27856. https://doi.org/10.1021/acsomega.0c02882
  • 38. Tworzewski, P., Raczkiewicz, W., Czapik, P., & Tworzewska, J. (2021). Diagnostics of concrete and steel in elements of an historic reinforced concrete structure. Materials, 14(2), 1–21. https://doi.org/10.3390/ma14020306
  • 39. Velu, S., Song, H.-W., & Saraswathy, V. (2007). Corrosion Monitoring of Reinforced Concrete Structures - A Review. In Int. J. Electrochem. Sci (Vol. 2). www.electrochemsci.org
  • 40. Zafeiropoulou, T., Rakanta, E., & Batis, G. (2011). Performance evaluation of organic coatings against corrosion in reinforced cement mortars. Progress in Organic Coatings, 72(1–2), 175–180. https://doi.org/10.1016/j.porgcoat.2011.04.005
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5667ace-f4b1-4d1d-9e17-fa264fa9d838
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.