PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of multi-phase models of blood flow for medium-sized vessels with stenosis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the work was to develop two-phase non-Newtonian blood models for medium-sized vessels with stenosis using power law and Herschel–Bulkley models. Methods: The blood flow was simulated in 3D models of blood vessels with 60% stenosis. The Ansys Fluent software was applied to implement the two-phase non-Newtonian blood models. In the present paper, the mixture model was selected to model the two phases of blood: plasma and red blood cells. Results: Simulations were carried out for four blood models: a) single-phase non-Newtonian, b) two-phase non-Newtonian, c) two-phase Herschel–Bulkley with yield stress 0 mPa, and d) two-phase Herschel–Bulkley with yield stress 10 mPa for blood plasma, while flow took place in vessel with stenosis 60%. Presentation of results in this paper shows that stenosis can substantially affect blood flow in the artery, causing variations of velocity and wall shear stress. Thus, the results in the present paper are maximum values of blood velocity and wall shear stress, profiles and distributions of blood velocity and wall shear stress computed for single- and two-phase blood models for medium-sized vessels with stenosis. Conclusions: For the two-phase blood models the influence of initial velocity on blood flow in the stenosis zone is not observed, the velocity profiles are symmetric and parabolic. Contrary, for the single phase non-Newtonian blood model, the velocity profile is flat in the stenosis zone and distribution of velocity is disturbed just behind the stenosis zone. The shapes of wall shear stress profiles for twophase blood models are similar and symmetric in the center of stenosis. The biggest differences in maximum values of velocities and wall shear stress are observed between single phase non-Newtonian power law and Herschel–Bulkley blood models. The comparison of the obtained results with the literature indicates that the two-phase Herschel–Bulkley model is the most suitable for describing flow in medium-sized vessels with stenosis.
Rocznik
Strony
63--70
Opis fizyczny
Bibliogr. 17 poz., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Krakow, Poland
  • AGH University of Science and Technology, Krakow, Poland
Bibliografia
  • [1] BLAKE A.S.T., PETLEY G.W., DEAKIN C.D., Effects of changes in packed cell volume on the specific heat capacity of blood: implications for studies measuring heat exchange in extracorporeal circuits, Brit. J. Anaesth., 2000, 84 (1), 28–32.
  • [2] BOWEN R.M., Incompressible porous media models by use of the theory of mixtures, Int. J. Eng. Sci., 1980, 18 (9), 1129–1148.
  • [3] CHAICHANA T., SUN Z., JEWKES J., Hemodynamic impacts of left coronary stenosis: A patient-specific analysis, Acta Bioeng. Biomech., 2013, 15 (3), 107–112.
  • [4] FENG R., XENOS M., GIRDHAR M., KANG W., DAVENPORT J.W., DENG Y., BLUESTEIN D., Viscous flow simulation in a stenosis model using discrete particle dynamics: a comparison between DPD and CFD, Biomech. Model Mechanobiol., 2012, 11, 119–129.
  • [5] HELLER L.I., SILVER K.H., VILLEGAS B.J., BALCOM S.J., WEINER B.H., Blood flow velocity in the right coronary artery: assessment before and after angioplasty, J. Am. Coll. Cardiol., 1994, 24(4), 1012–1017.
  • [6] LIN K.Y., SHIH T.C., CHOU S.H., CHEN Z.Y., HSU C.H., HO C.Y., Computational fluid dynamics with application of different theoretical flow models for the evaluation of coronary artery stenosis on CT angiography: comparison with invasive fractional flow reserve, Biomed. Phys. Eng. Express, 2016, 2, 065011, DOI: 10.1088/2057 1976/2/6/065011.
  • [7] MITSOULIS E., Flows of viscoplastic materials: models and computations, Rheol. Rev., 2007, 135–178.
  • [8] NANDA S.P., BASU MALLIK B., A non-newtonian twophase fluid model for blood flow through arteries under stenotic condition, Int. J. Pharm. Bio. Sci., 2012, 2 (2), 237–247.
  • [9] PARK Y.R., KIM S.J., KIM S.J., KIM J.S., KANG H.S., KIM G.B., A study on hemodynamic characteristics at the stenosed blood vessel using computational fluid dynamics simulations, J. Biomed. Nanotechnol., 2013, 9, 1137–1145.
  • [10] STEGEHUIS V.E., WIJNTJENS G.W.M., MURAI T., PIEK J.J., VAN DE HOEF T.P., Assessing the haemodynamic impact of coronary artery stenoses: intracoronary flow versus pressure measurements, Eur. Cardiol. Rev., 2018, 13 (1), 46–53.
  • [11] PONDER E., The specific heat and the heat of compression of human red cells, sickled red cells, and paracrystalline rat red cells, J. Gen. Physiol., 1955, 38 (5), 575–580.
  • [12] ROSENTRATER K.A., FLORES R.A., Physical and rheological properties of slaughterhouse swine blood and blood components, T. ASAE, 1997, 40 (3), 683–689.
  • [13] SAKAR D.S., LEE U., Influence of slip velocity in Herschel–Bulkley fluid flow between parallel plates – A mathematical study, J. Mech. Sci. Technol., 2016, 30, 3203–3218.
  • [14] WALBURN F.J., SCHNECK D.J., A constitutive equation for whole human blood, Biorheology, 1976, 13, 201–210.
  • [15] DICARLO A.L., HOLDSWORTH D.W., POEPPING T.L., Study of the effect of stenosis severity and non-Newtonian viscosity on multidirectional wall shear stress and flow disturbances in the carotid artery using particle image velocimetry, Med. Eng. Phys., 2019, 65, 8–23.
  • [16] ZHANG Y., ZHANG Y., GAO L., DENG L., HU X., ZHANG K., LI H., The variation in frequency locations in Doppler ultrasound spectra for maximum blood flow velocities in narrowed vessels, Med. Eng. Phys., 2017, 49, 46–55.
  • [17] MALOTA Z., GLOWACKI J., SADOWSKI W., KOSTUR M., Numerical analysis of the impact of flow rate, heart rate, vessel geometry, and degree of stenosis on coronary hemodynamic indices, BMC Cardiovascular Disorders, 2018, 18(132), 1–16.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5619181-8d25-4c2f-acdc-c67989af4a0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.