PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The aftershock sequence at a deep nickel mine: temporal and spatial distribution, magnitude distribution, and aftershock decay following major events

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mining-induced seismic events greatly threaten safety of underground workers and studying major seismic events would help mitigate hazards in deep mines. Characterizing the aftershock sequence of major events can contribute to developing a reentry protocol after major events occur at mines. This study uses two major events and their aftershock sequences at Creighton Mine to investigate properties of aftershock sequences focusing on the magnitude of completeness and aftershock decay pattern. Two major events with moment magnitude 3.1 and 1.4 are analyzed, respectively, and their aftershock sequence are examined in this study. The optimal magnitude of completeness is rigorously determined by evaluating the goodness of ft using the maximum likelihood method. Then, parameters of aftershock decay using the MOL are estimated. We identify that the p-value of the two studied events is slightly larger than 0.8. This parametrization process using the MOL can assist in better understanding aftershock sequences of mining-induced major events and therefore mitigating seismic hazards in mining by potentially helping establish a reentry protocol based on the seismicity dropping below a certain rate. For establishing a reentry protocol, the study of the two events can be considered as a methodological work and a future statistical work for many events with different magnitudes and locations to establish the range of the MOL parameters is needed.
Czasopismo
Rocznik
Strony
1241--1252
Opis fizyczny
Bibliogr. 51 poz.
Twórcy
autor
  • State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing, China
  • Department of Mining and Minerals Engineering, Virginia Tech, Blacksburg, VA 24060, USA
autor
  • Department of Mining and Minerals Engineering, Virginia Tech, Blacksburg, VA 24060, USA
autor
  • Creighton Mine, Vale Canada Limited, Sudbury, ON, Canada
autor
  • School of Resources and Safety Engineering, Chongqing University, Chongqing, China
  • School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, China
  • School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, China
Bibliografia
  • 1. Barton N, Pandey SK (2011) Numerical modelling of two stoping methods in two Indian mines using degradation of c and mobilization of φ based on Q-parameters. Int J Rock Mech Min Sci 48:1095–1112. https://doi.org/10.1016/J.IJRMMS.2011.07.002
  • 2. Båth M (1965) Lateral inhomogeneities of the upper mantle. Tectonophysics 2(6):483–514
  • 3. Beck DA, Brady BHG (2002) Evaluation and application and controlling parameters for seismic events in hard-rock mines. Int J Rock Mech Min Sci 39:633–642. https://doi.org/10.1016/S1365-1609(02)00061-8
  • 4. Bogucki R, Lasek J, Milczek Jk, Tadeusiak M (2016). Early warning system for seismic events in coal mines using machine learning. In 2016 federated conference on computer science and information systems (FedCSIS) 2016 Sep 11 (pp. 213–220). IEEE
  • 5. Brady BHG, Brown ET (2007) Rock mechanics and mining engineering. Rock mechanics for underground mining. Springer, Dordrecht, pp 1–16
  • 6. Brady B, Leighton F (1977) Seismicity anomaly prior to a moderate rock burst: a case study. Int J Rock Mech Min Sci Geomech Abstr 14(3):127–132
  • 7. Brown L, Hudyma M (2017a) Identifying local stress increase using a relative apparent stress ratio for populations of mining-induced seismic events. Can Geotech J 54:128–137. https://doi.org/10.1139/cgj-2016-0050
  • 8. Brown L, Hudyma M (2017b) Identification of stress change within a rock mass through apparent stress of local seismic events. Rock Mech Rock Eng 50:81–88. https://doi.org/10.1007/s00603-016-1092-z
  • 9. Disley N (2014). Seismic risk and hazard management at Kidd Mine. In: Proceedings of the seventh international conference on deep and high stress mining (107–121). Australian Centre for Geomechanics
  • 10. Elisabeth C (2011) New approaches towards understanding and forecasting induced seismicity (Doctoral dissertation, ETH Zurich). https://doi.org/10.3929/ethz-a-006715437
  • 11. Gutenberg B, Richter C (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34(4):185–188
  • 12. Goebel THW, Schorlemmer D, Becker TW et al (2013) Acoustic emissions document stress changes over many seismic cycles in stick-slip experiments. Geophys Res Lett 40:2049–2054. https://doi.org/10.1002/grl.50507
  • 13. Helmstetter A, Sornette D (2002) Subcritical and supercritical regimes in epidemic models of earthquake aftershocks. J Geophys Res Solid Earth 107(B10):ESE 10-1-ESE 10-21
  • 14. Holschneider M, Narteau C, Shebalin P et al (2012) Bayesian analysis of the MOL. J Geophys Res Solid Earth. https://doi.org/10.1029/2011JB009054
  • 15. Hudyma M, Potvin Y (2010) An engineering approach to seismic risk management in hardrock mines. Rock Mech Rock Eng 43(6):891–906
  • 16. Kagan YY (2011) Random stress and Omori′ s law. Geophys J Int 186(3):1347–1364
  • 17. Kisslinger C, Jones LM (1991) Properties of aftershock sequences in southern California. J Geophys Res Solid Earth 96(B7):11947–11958. https://doi.org/10.1029/91jb01200
  • 18. Klein FW, Wright T, Nakata J (2006) Aftershock decay, productivity, and stress rates in Hawaii: indicators of temperature and stress from magma sources. J Geophys Res Solid Earth 111:1–26. https://doi.org/10.1029/2005JB003949
  • 19. Llenos AL, Michael AJ (2013) Modeling earthquake rate changes in Oklahoma and Arkansas: possible signatures of induced seismicity. Bull Seismol Soc Am 103(5):2850–2861. https://doi.org/10.1785/0120130017
  • 20. Luxbacher K, Westman E, Swanson P, Karfakis M (2008) Three-dimensional time-lapse velocity tomography of an underground longwall panel. Int J Rock Mech Min Sci 45:478–485. https://doi.org/10.1016/j.ijrmms.2007.07.015
  • 21. Ma X, Westman EC, Fahrman BP, Thibodeau D (2016) Imaging of temporal stress redistribution due to triggered seismicity at a deep nickel mine. Geomech Energy Environ 5:55–64. https://doi.org/10.1016/j.gete.2016.01.001
  • 22. Malek F, Espley S, Yao M, Trifu C (2008) Management of high stress and seismicity at Vale Inco Creighton Mine. In: The 42nd US rock mechanics symposium (USRMS). American rock mechanics association
  • 23. Marsan D, Bean C, Steacy S (1999) Spatio-temporal analysis of stress diffusion in a mining-induced seismicity system. Geophys Res Lett 26(24):3697–3700
  • 24. Morikami S, Mitsui Y (2020) Omori-like slow decay (p < 1) of postseismic displacement rates following the 2011 Tohoku megathrust earthquake. Earth Planets Space 72(1):1–10. https://doi.org/10.1186/s40623-020-01162-w
  • 25. Nyffenegger P, Frohlich C (2000) Aftershock occurrence rate decay properties for intermediate and deep earthquake sequences. Geophys Res Lett 27:1215–1218. https://doi.org/10.1029/1998GL010371
  • 26. Omi T, Ogata Y, Hirata Y, Aihara K (2013) Forecasting large aftershocks within one day after the main shock. Sci Rep 3:2218. https://doi.org/10.1038/srep02218
  • 27. Omori F (1894) On the after-shocks of earthquakes. J Coll Sci Imp Univ Jpn 7:111–200
  • 28. Ouillon G, Sornette D (2005) Magnitude-dependent Omori law: theory and empirical study—magnitude-dependent Omori law. J Geophys Res Solid Earth. https://doi.org/10.1029/2004JB003311
  • 29. Parsons T (2002) Global Omori law decay of triggered earthquakes: large aftershocks outside the classical aftershock zone: global Omori law decay of triggered earthquakes. J Geophys Res Solid Earth 107(B9):ESE 9-1-ESE 9-20. https://doi.org/10.1029/2001JB000646
  • 30. Schoenberg FP (2013) Facilitated estimation of ETAS. Bull Seismol Soc Am 103(1):601–605. https://doi.org/10.1785/0120120146
  • 31. Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquake-size distribution across different stress regimes. Nature 437(7058):539–542. https://doi.org/10.1038/nature04094
  • 32. Shaw B (1993) Generalized Omori law for aftershocks and foreshocks from a simple dynamics. Geophys Res Lett 20(10):907–910
  • 33. Shcherbakov R, Turcotte DL, Rundle JB (2005) Aftershock statistics. Pure Appl Geophys 162:1051–1076. https://doi.org/10.1007/s00024-004-2661-8
  • 34. Shcherbakov R, Turcotte DL, Rundle JB (2004) A generalized Omori’s law for earthquake aftershock decay: a generalized Omori’s law. Geophys Res Lett 31(11):n/a-n/a. https://doi.org/10.1029/2004GL019808
  • 35. Shi Y, Bolt BA (1982) The standard error of the magnitude-frequency b value. Bull of the Seismol Soc Am 72(5):1677–1687. https://doi.org/10.1785/BSSA0720051677
  • 36. Tierney R, Morkel G (2017) The optimisation and comparison of re-entry assessment methodologies for use in seismically active mines. In: Proceedings of the eighth international conference on deep and high stress mining (183–196). Australian centre for geomechanics
  • 37. Urbancic T, Trifu C, Young R (1993) Microseismicity derived fault-planes and their relationship to focal mechanism, stress inversion, and geologic data. Geophys Res Lett 20(22):2475–2478
  • 38. Utsu T (1961) A statistical study on the occurrence of aftershocks. Geophys Mag 30:521–605
  • 39. Utsu T, Ogata Y (1995) The centenary of the Omori formula for a decay law of aftershock activity. J Phys Earth 43(1):1–33
  • 40. Utsu T, Seki A (1954) A relation between the area of aftershock region and the energy of main shock. J Seism Soc Jpn 7:233–240
  • 41. Vallejos JA, McKinnon SM (2009). Re-entry protocols for seismically active mines using statistical analysis of aftershock sequences. In rock engineering in difficult conditions. In: Proceedings of the 20th Canadian rock mechanics symposium, Toronto, Canada, paper (Vol. 4028)
  • 42. Vallejos J, Estay R (2018) Seismic parameters of mining-induced aftershock sequences for re-entry protocol development. Pure Appl Geophys 175(3):793–811
  • 43. Vallejos J, McKinnon S (2010) Omori’s law applied to mining-induced seismicity and re-entry protocol development. Pure Appl Geophys 167:91–106. https://doi.org/10.1007/s00024-009-0010-7
  • 44. Vallejos J, McKinnon S (2011) Correlations between mining and seismicity for re-entry protocol development. Int J Rock Mech 48(4):616–625
  • 45. Wang C-Y, Manga M (2010) Earthquakes influenced by water. Springer, Heidelberg, pp 125–139
  • 46. Wesnousky S (1994) The Gutenberg–Richter or characteristic earthquake distribution, which is it? Bull Seismol Soc Am 84(6):1940–1959
  • 47. Wesnousky S (1999) Crustal deformation processes and the stability of the Gutenberg–Richter relationship. Bull Seismol Soc Am 89(4):1131–1137
  • 48. Wiemer S, Wyss M (1997) Mapping the frequency-magnitude distribution in asperities: an improved technique to calculate recurrence times? J Geophys Res Solid Earth 102(B7):15115–15128. https://doi.org/10.1029/97jb00726
  • 49. Xu YH, Cai M (2017) Influence of loading system stiffness on post-peak stress-strain curve of stable rock failures. Rock Mech Rock Eng 50:2255–2275. https://doi.org/10.1007/s00603-017-1231-1
  • 50. Young RP, Maxwell SC (1992) Seismic characterization of a highly stressed rock mass using tomographic imaging and induced seismicity. J Geophys Res Earth 97:12361–12373
  • 51. Zhuang J, Murru M, Falcone G, Guo Y (2019) An extensive study of clustering features of seismicity in Italy from 2005 to 2016. Geophys J Int 216(1):302–318
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c55f2694-a617-4c99-afb4-d573ef162b46
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.