PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Geochemistry of germanium in thermal waters of the Jelenia Góra geothermal system (Sudetes, Poland) : solute relationships and aquifer mineralogy

Treść / Zawartość
Pełne teksty: Pokaż wszystkie zasoby
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A long-term (2004–2021) study of the chemical composition of thermal waters in the Jelenia Góra geothermal system provided information on a wide set of components. The subject of the present study is the geochemistry of germanium (Ge), which occurs in concentrations ranging from 2.7 to 6.3 μg/L in the waters studied. Interpretation of a set of 46 chemical analyses identified relationships between germanium and other elements in thermal waters from individual intakes. In the old thermal waters of Cieplice and Karpniki of deep circulation, germanium is derived from silicates and its concentration is controlled by the solubility of Ge-bearing quartz with an average Ge content of 1.5 μg/g. The source of germanium in the deep old thermal water at Staniszów is mainly sulphides, most likely arsenopyrite, but the secondary contribution of Ge from silicates (biotites, amphiboles) should not be ignored. The mineral phase, responsible for controlling Ge activity in this water, cannot yet be identified. The shallow thermal waters at Cieplice, which are a mixture of old thermal waters and modern waters, differ from the deep waters. Germanium in shallow waters probably is derived from silicates, but owing to mixing, there are no chemical equilibrium conditions; the concentration of Ge is determined by the dynamic equilibrium of the mixed water components. The modern water of intake no. 2 (Cieplice) differs from other shallow waters and also shows similarities to the Staniszów water. The germanium in the no. 2 water probably comes mainly from ferromagnesian minerals (biotite, amphiboles), although the influence of sulphides cannot be excluded. The relationships of germanium to other elements, including the Ge/Si ratio, appear to be effective indicators of hydrogeochemical conditions. Thermal waters from the different locations show both similarities and differences in chemical composition,especially of minor and trace components. At the present, still weak stage of recognition, the Jelenia Góra geothermal system can be treated as an area of occurrence of local systems responsible for the quantity and quality of thermal waters in individual intakes.
Rocznik
Strony
323--344
Opis fizyczny
Bibliogr. 78 poz., map., rys., tab., wykr.
Twórcy
  • Department of Hydrogeology and Geophysics, Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland
  • Department of Geochemistry, Mineralogy and Petrology, Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland
  • Department of Hydrogeology and Geophysics, Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland
  • Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-093 Warsaw, Poland
autor
  • Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-093 Warsaw, Poland
autor
  • Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
Bibliografia
  • 1. Aleksandrowski, P., Słaby, E., Szuszkiewicz, A., Galbarczyk-Gąsiorowska, L., Knapik, R., Madej, S., Sobczyk, A. & Szełęg, E., 2019. Budowa geologiczna Karkonoszy. In: Knapik, R., Migoń, P. & Raja, A. (eds), Przyroda Karkonoskiego Parku Narodowego, III wydanie. Karkonoski Park Narodowy, Jelenia Góra, pp. 7-46. [In Polish.]
  • 2. Arnórsson, S., 1969. A Geochemical Study of Selected Elements in Thermal Waters of Iceland. Unpublished Ph.D. Thesis, Faculty of Science of The University of London, 353 pp.
  • 3. Arnórsson, S. & Óskarsson, N., 2007. Molybdenum and tungsten in volcanic rocks and in surface and <100°C ground waters in Iceland. Geochimica et Cosmochimica Acta, 71: 284-304.
  • 4. Bardet, J., 1914. Extraction du germanium des eaux de Vichy. Comptes rendus de l'Académie des sciences, 158: 1278-1280.
  • 5. Bernstein, L., 1985. Germanium geochemistry and mineralogy. Geochimica et Cosmochimica Acta, 49: 2409-2422.
  • 6. Borkowska, M., 1966. Pétrographie du granite des Karkonosze. Geologia Sudetica, 2: 7-119. [In Polish, with French summary.]
  • 7. Breiter, K., Ackerman, L., Svojtka, M. & Müller, A., 2013a. Behavior of trace elements in quartz from plutons of different geochemical signature: A case study from the Bohemian Massif, Czech Republic. Lithos, 175-176: 54-67.
  • 8. Breiter, K., Gardenová, N., Kanický, V. & Vaculovič, T., 2013b. Gallium and germanium geochemistry during magmatic fractionation and post-magmatic alteration in different types of granitoids: a case study from the Bohemian Massif (Czech Republic). Geologica Carpathica, 64: 171-180.
  • 9. Chrustschoff, K., 1892. Ueber das Vorhandensein von Germanium in den Niobium- und Tantal-haltigen Mineralien. Journal of the Russian Physico-Chemical Society, 24 (2-3): 130.
  • 10. Ciężkowski, W., Doktór, S., Graniczny, M., Kabat, T., Kozłowski, J., Liber-Madziarz,E.,Przylibski,T.,Teisseyre,B.,Wiśniewska,M. & Zuber, A., 1996. Próba określenia obszarów zasilania wód leczniczych pochodzenia infiltracyjnego w Polsce na podstawie badań izotopowych. Złoże wód leczniczych Cieplic Śląskich-Zdroju. Unpublished Report, Zdroje Ltd., Wrocław, 32 pp. [In Polish.]
  • 11. Ciężkowski, W., Grabczak, J. & Zuber, A., 1985. Pochodzenie wód termalnych Cieplic Śląskich Zdroju i ich eksploatacja w świetle badań izotopowych. In: Aktualne Problemy Hydrogeologii. Wydawnictwo AGH, Kraków, Karniowice, pp. 225-231. [In Polish.]
  • 12. Ciężkowski, W., Gröning, M., Leśniak, P. M., Weise, S. M. & Zuber, A., 1992. Origin and age of thermal waters in Cieplice Spa, Sudeten, Poland, inferred from isotope, chemical and noble gas data. Journal of Hydrology, 140: 89-117.
  • 13. Ciężkowski, W., Kiełczawa, B., Liber-Makowska, E., Przylibski, T. A. & Żak, S., 2016. Mineral waters of the Sudetic region (SW Poland) - selected problems. Przegląd Geologiczny, 64: 671-682. [In Polish, with English summary.]
  • 14. Ciężkowski, W., Michniewicz, M. & Przylibski, T. A., 2011. Thermal waters of Lower Silesia (SW Poland). In: Żelaźniewicz, A., Wojewoda & J., Ciężkowski, W. (eds), Mezozoik i kenozoik Dolnego Śląska. WIND, Wrocław, pp. 107-120. [In Polish, with English summary.]
  • 15. Ciężkowski, W. & Mroczkowska. B., 1985. Hydrogeochemical anomaly of Cieplice Śląskie Zdrój. Annales Societatis Geologorum Poloniae, 55: 473-484. [In Polish, with English summary.]
  • 16. Ciężkowski, W. & Szarszewska Z., 1978. O zjawisku mieszania się wód leczniczych z wodami ich otoczenia na przykładzie uzdrowisk sudeckich. Problemy Uzdrowiskowe, 6: 167-173. [In Polish.]
  • 17. Criaud, A. & Fouillac, C., 1986. Study of CO2-rich thermomineral waters from the central French massif. 2. Behaviour of some trace-metals, arsenic, antimony and germanium. Geochimica et Cosmochimica Acta, 50: 1573-1582.
  • 18. Dobrzyński, D., Boguszewska-Czubara, A. & Sugimori, K., 2018. Hydrogeochemical and biomedical insights into germanium potential of curative waters: a case study of health resorts in the Sudetes Mountains (Poland). Environmental Geochemistry and Health, 40: 1355-1375.
  • 19. Dobrzyński, D., Gruszczyński, T. & Birski, Ł., 2017. Germanium as an indicator of hydrogeochemical conditions in the Jelenia Góra Geothermal System. Przegląd Geologiczny, 65: 946950. [In Polish, with English summary.]
  • 20. Dobrzyński, D., Słaby, E. & Mętlak, A., 2011. Germanium versus silicon geochemistry in medicinal and mineral groundwater from the Sudetes and the Carpathians mountains (Poland). Metal Ions in Biology and Medicine, 11: 285-285.
  • 21. Domańska-Siuda, J., 2012. Brannerite and associated uranium minerals from Wołowa Góra (Karkonosze Mts., Poland). Biuletyn Państwowego Instytutu Geologicznego, 448: 393-400. [In Polish, with English summary.]
  • 22. Dowgiałło, J., 2000. Thermal water prospecting results at Jelenia Góra-Cieplice (Sudetes, Poland) versus geothermometric forecasts. Environmental Geology, 39: 433-436.
  • 23. Duthou, J. L., Couturie, J. P., Mierzejewski, M. P. & Pin C., 1991. Next dating of granite sample from the Karkonosze Mountains using Rb-Sr total rock isochrone method. Przegląd Geologiczny, 39: 75-79. [In Polish, with English summary.]
  • 24. Evans, M. J. & Derry, L. A., 2002. Quartz control of high germanium-silicon ratios in geothermal waters. Geology, 30: 1019-1022.
  • 25. Faure, G., 1998. Principles and Applications of Geochemistry, 2nd Edition. Prentice Hall, New Jersey, 928 pp.
  • 26. Fistek, J. & Dowgiałło, J., 2003. Thermal waters at Cieplice Śląskie Spa in the light of geological investigations carried out in the years 1969-1973 and 1997-1998. In: Ciężkowski, W., Wojewoda, J. & Żelażniewicz, A. (eds), Sudety Zachodnie od wendu do czwartorzędu. WIND, Wrocław, pp. 207-224. [In Polish, with English summary.]
  • 27. Frenzel, M., Ketris, M. P. & Gutzmer, J., 2014. On the geological availability of germanium. Mineralium Deposita, 49: 471-486.
  • 28. Goliáš, V., Hájková, L., Lipanský, T., Černík, T., Kohn, P., Ježek, J., Procházka, R., Przylibski, T. A., Dohnal, J., Strnad, L., Kowalska, A., Fijałkowska-Lichwa, L., Miśta, W. & Nowakowski, R., 2022. Exploration and investigation of high-level radon medicinal springs in the crystalline units: Lugicum. Water 2022, 14, 200. https://doi.org/10.3390/ w14020200
  • 29. Goliáš, V., Hrušková, L., Černík, T., Bruthans, J., Nakládal, P., Churáčková, Z. & Kula, A., 2014. Albrechtice chloride district. Zprávy o geologických výzkumech, 47: 165-170. [In Czech, with English summary.]
  • 30. Höll, R., Kling, M. & Schroll, E., 2007. Metallogenesis of germanium - A review. Ore Geology Reviews, 30: 145-180.
  • 31. Ivanov, V. V., 1996. Redkiye p-elementy (Vol. 3). In: Burienkov, E. K. (ed.), Ekologicheskaya geokhimiya elementov - 6 volumes set. Nedra Publ., Moscow, 352 pp. [In Russian.]
  • 32. Karasiński, J., Tupys, A., Halicz, L. & Bulska, E., 2021. A novel approach for the determination of the Ge isotope ratio using liquid-liquid extraction and hydride generation by multicollector inductively coupled plasma mass spectrometry. Analytical Chemistry, 93, 40: 13548-13554.
  • 33. Kozłowski, A. & Karwowski, Ł., 1974. Chlorine/bromine ratio in fluid inclusions. Economic Geology, 69: 268-271.
  • 34. Kozłowski, A. & Matyszczak, W., 2022. Fluorite and related fluids in the Karkonosze granitoid pluton, SW Poland. Acta Geologica Polonica, 72: 9-31.
  • 35. Kozłowski, A., 1973. Post-magmatic quartz of the Strzegom and Karkonosze granitoids (Lower Silesia). Acta Geologica Polonica, 23: 341-363. [In Polish, with English summary.]
  • 36. Kozłowski, A., 1978. Pneumatolytic and hydrothermal activity in the Karkonosze-Izera block. Acta Geologica Polonica, 28: 171-222.
  • 37. Kozłowski, A., Ilnicki, S., Matyszczak, W. & Marcinowska, A., 2016. Magmatic and post-magmatic phenomena in the Karkonosze granite and its metamorphic envelope (West Sudetes, SW Poland). Acta Geologica Polonica, 66: 451-471.
  • 38. Kozłowski, A., Sanocka, M. & Dzierżanowski, P., 2002. Tin-tungsten and associate mineralization at Szklarska Poręba Huta, Karkonosze Massif, SW Poland. Mineralogical Society of Poland Special Papers, 20: 248-250.
  • 39. Kraynov, S. R., 1965. O geokhimii ftora, volframa i germaniya v azotnykh termal'nykh vodakh kristallicheskikh porod. Geokhimiya, 11: 1335-1345. [In Russian.]
  • 40. Kröner, A., Hegner, E., Hammer, J., Haase, G., Bielicki, K. H., Krauss, M. & Eidam, J., 1994. Geochronology and Nd-Sr systematics of Lusatian granitoids: significance for the evolution of the Variscan orogen in east-central Europe. International Journal of Earth Sciences, 83: 357-376.
  • 41. Krüss, G., 1888. Ueber ein neues Vorkommen des Germaniums. Berichte der Deutschen Chemischen Gesellschaft, 21(1): 131-133.
  • 42. Lewis, B. L., Andreae, M. O., Froelich, P. N. & Mortlock, R. A., 1988. A review of the biogeochemistry of germanium in natural waters. The Science of the Total Environment, 73: 107-120.
  • 43. Liber-Makowska, E. & Kiełczawa, B., 2020. Modelling of selected hydrodynamic and hydrochemical parameters of a geothermal water system: an example of Cieplice therapeutic waters. Environmental Earth Sciences, 79, 289. https://doi. org/10.1007/s12665-020-08947-y
  • 44. Lincio, G., 1904. Ueber das angebliche Vorkommen von Germanium in den Mineralien Euxenit, Samarskit etc. Centralblatt für Mineralogie, Geologie und Paläontologie, 1904: 142-149.
  • 45. Lyakhovich, V. V., 1972. Redkiye elementy v porodoobrazuyus- hchikh mineralakh granitoidov. Nauka, Moscow, 200 pp. [In Russian.]
  • 46. Łukaczyński, I. & Polaczek, P., 2014a. Dokumentacja hydrogeologiczna ustalająca zasoby eksploatacyjne ujęcia wód termalnych otworem KT-1 w Karpnikach k. Jeleniej Góry. Unpublished Report, Wektor Inwestycje Ltd., Gliwice, 72 pp. [In Polish.]
  • 47. Łukaczyński, I. & Polaczek, P., 2014b. Dokumentacja hydrogeologiczna ustalająca zasoby eksploatacyjne ujęcia wód termalnych otworem ST-1 w Staniszowie k. Jeleniej Góry. Unpublished Report, Termy Staniszów Ltd., Staniszów, 78 pp. [In Polish.]
  • 48. Marszałek, H., 1996. Hydrogeology of the upper part of the Kamienna river catchment in the West Sudetes. Acta Universitatis Wratislaviensis, 1881, 100 pp. [In Polish, with English summary.]
  • 49. Marszałek, H., 2007a. Forming of groundwater resources in the Jelenia Góra Basin Region. Acta Universitatis Wratislaviensis, 2993, 234 pp. [In Polish, with English summary.]
  • 50. Marszałek, H., 2007b. Water-bearing capacity and groundwater resources of hard rocks in the Łomnica River catchment (Western Sudetes, SW Poland). Acta Universitatis Wratislaviensis, 3041: 233-244.
  • 51. Marszałek, H., 2010. Hydrogeological zoning in the Jelenia Góra region (the Western Sudetes). Biuletyn Państwowego Instytutu Geologicznego, 440: 87-100. [In Polish, with English summary.]
  • 52. Mazur, S., Aleksandrowski, P., Turniak, K. & Awdakiewicz, M., 2007. Geology, tectonic evolution and Late Paleozoic mag- matism of Sudetes - an overview. In: Kozłowski, A. & Wiszniewska, J. (eds), Granitoids in Poland. AM Monograph, No. 1. Faculty of Geology, University of Warsaw, Warszawa, pp. 59-87.
  • 53. Mochnacka, K., 1966. Ore minerals of the polymetallic deposit at Kowary (Lower Silesia). Prace Mineralogiczne Polskiej Akademii Nauk, 4: 7-54. [In Polish, with English summary.]
  • 54. Mochnacka, K., 1982. Polymetallic mineralization of the eastern metamorphic cover of the Karkonosze granite and its connection with the geologic evolution of the area. Biuletyn Państwowego Instytutu Geologicznego, 341: 273-289. [In Polish, with English summary.]
  • 55. Mochnacka, K., Oberc-Dziedzic, T., Mayer, W. & Pieczka, A., 2015. Ore mineralization related to geological evolution of the Karkonosze-Izera Massif (the Sudetes, Poland) - Towards a model. Ore Geology Reviews, 64: 215-238.
  • 56. Mochnacka, K., Oberc-Dziedzic, T., Mayer, W., Pieczka, A. & Góralski, M., 2007. Occurrence of sulphides in Sowia Dolina near Karpacz (SW Poland) - an example of ore mineralization in the contact aureole of the Karkonosze granite. Mineralogia Polonica, 38: 185-207.
  • 57. Mortlock, R. A. & Froelich, P. N., 1987. Continental weathering of germanium: Ge/Si in the global river discharge. Geochimica et Cosmochimica Acta, 51: 2075-2082.
  • 58. Müller, J. H., 1924. Germanium in smithsonite and mine waters. Industrial and Engineering Chemistry, 16(6): 604-605. Oberc-Dziedzic, T., Pin, C. & Kryza, R., 2005. Early Palaeozoic crustal melting in an extensional setting: petrological and Sm-Nd evidence from the Izera granite-gneisses, Polish Sudetes. International Journal of Earth Sciences, 94: 354-368.
  • 59. Parkhurst, D. L. & Appelo, C. A. J., 2013. Description of Input and Examples for PHREEQC Version 3 - A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. U.S. Geological Survey Techniques and Methods, Book 6, Chapter A43, 497 pp. http://pubs.usgs.gov/tm/06/a43
  • 60. Pentcheva, E. N., 1967. Sur les particularities hydrochimiques de certains oligoelements des eaux naturelles. Annali di Idrologia, 5: 90-113.
  • 61. Pentcheva, E. N., 1973. On the hydrogeochemical behaviour of gallium and germanium in the dynamic system “thermal water - rock” and its genetic significance. Proceedings of Symposium on Hydrogeochemistry and Biochemistry. The Clarke Company, Washington, pp. 140-152.
  • 62. Pentcheva, E. N., 1975. Concernant les formes migratoires de certains oligo-éléments anionogenes des eaux naturelles. Inzhenerna Geologiya i Khidrogeologiya (Engineering Geology and Hydrogeology), 2: 3-18. [In Bulgarian, with French summary.]
  • 63. Przylibski, T. A., Domin, E., Gorecka, J. & Kowalska, A., 2020. 222Rn concentration in groundwaters circulating in granitoid massifs of Poland. Water, 12: 748. https://doi.org/10.3390/w12030748
  • 64. Przylibski, T. A., Żak, S., Kowalska, A. & Domin, E., 2018. Composition of gas dissolved in thermal water extracted from borehole KT-1 at Karpniki (Karkonosze granite area, Sudetes). Przegląd Geologiczny, 66: 483-494. [In Polish, with English summary.]
  • 65. Rosenberg, E., 2009. Germanium: environmental occurrence, importance and speciation. Reviews in Environmental Science and Biotechnology, 8: 29-57.
  • 66. Rudnick, R. L. & Gao, S., 2014. 4.1 Composition of the continental crust. In: Rudnick, R. L. (ed.), Treatise on Geochemistry, Vol. 4. The Crust. Elsevier, Amsterdam, pp. 1-51.
  • 67. Sawicki, L. (ed), 1995. Mapa geologiczna regionu dolnośląskiego z przyległymi obszarami Czech i Niemiec (bez utworów czwartorzędowych), 1:100 000. Państwowy Instytut Geologiczny, Warszawa. [In Polish.]
  • 68. Shvartsev, S. L., 2008. Geochemistry of fresh groundwater in the main landscape zones of the Earth. Geochemistry International, 46: 1285-1398.
  • 69. Skwarczyńska-Wojsa, A. L., Piech, A. & Wojtoń, A., 2021. Determination of germanium and other trace elements concentration in mineral waters of Low Beskid (Poland) used for crenotherapy. Environmental Earth Sciences, 80, 57. https:// doi.org/10.1007/s12665-020-09344-1
  • 70. Słaby, E. & Martin, H., 2008. Mafic and Felsic Magma Interaction in Granites: the Hercynian Karkonosze Pluton (Sudetes, Bohemian Massif). Journal of Petrology, 49: 353-391.
  • 71. Urbain, G., 1909. Analyse spectrographique des blendes. Comptes rendus de l'Académie des sciences, 149: 602-603.
  • 72. Waleńczak, Z., 1969. Geochemistry of elements dispersed in quartzes - Ge, Al, Ga, Ti, Fe, Li, Be. Archiwum Mineralogiczne, 28: 192-335. [In Polish, with English summary.]
  • 73. Winkler, C., 1886. Germanium, Ge, ein neues, nichtmetallisches Element. Berichte der Deutschen Chemischen Gesellschaft, 19: 210-211.
  • 74. Wittmann, A. & Hörmann, P. K., 1972. Germanium. In: Wedepohl, K. H. (ed.), Handbook of Geochemistry, Vol. II-3. Springer, Berlin, 65 pp.
  • 75. Wood, S. A. & Samson, I. M., 2006. The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geology Reviews, 28: 57-102.
  • 76. Žák, J. & Klomínský, J., 2007. Magmatic structures in the Krkonoše-Jizera Plutonic Complex, Bohemian Massif: evidence for localized multiphase flow and small-scale thermal-mechanical instabilities in a granitic magma chamber. Journal of Volcanology and Geothermal Research, 164: 254-267.
  • 77. Ziegler, P. A. & Dezes, P., 2007. Cenozoic uplift of Variscan Massifs in the Alpine foreland: Timing and controlling mechanisms. Global and Planetary Change, 58: 237-269.
  • 78. Zuber, A., Ciężkowski, W., Kryza, J. & Grabczak, J., 1989. Origin of thermal waters in Cieplice Śląskie and their isotopic and hydrochemical anomaly. Prace Naukowe Instytutu Politechniki Wrocławskiej, 58: 389-400. [In Polish, with English summary.]
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c55daff3-3ecd-48ff-8d36-3f05e6450ba7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.