PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermally activated persulfate treatment and mineralization of a recalcitrant high TDS petrochemical wastewater

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermally activated persulfate efficiency for the treatment of a recalcitrant high TDS wastewater was investigated. The specific character of studied wastewater was high TDS content of around 23820 mg/L and BOD5/COD ratio of 0.07. Effective operational parameters including initial pH values of 3–9, reaction temperature of 40–80°C and persulfate concentrations of 0.5–5 g/L for COD removal were investigated in batch mode experiments. Removal efficiency was pH and temperature dependent. The COD and TOC removal of 94.3% and 82.8% were obtained at persulfate concentration of 4 g/L, initial pH value of 5 and temperature of 70°C after 180 min for initial COD concentration of 1410 mg/L. The pseudo first-order kinetic model was best fitted with COD removal (R2  = 0.94).
Rocznik
Strony
72--77
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
autor
  • Ahvaz Jundishapur University of Medical Sciences, Environmental Technologies Research Center, Ahvaz, Iran
  • Ahvaz Jundishapur University of Medical Sciences,Department of Environmental Health Engineering, School of Health, Ahvaz, Iran
  • Ahvaz Jundishapur University of Medical Sciences, Department of Environmental Health Engineering, School of Health, Ahvaz, Iran
autor
  • Ahvaz Jundishapur University of Medical Sciences, Environmental Technologies Research Center, Ahvaz, Iran
  • Ahvaz Jundishapur University of Medical Sciences,Department of Environmental Health Engineering, School of Health, Ahvaz, Iran
autor
  • Zahedan University of Medical Sciences, Department of Environmental Health Engineering, School of Health, Zahedan, Iran
Bibliografia
  • 1. Botalova, O.S., Frauenrath, J. & Dsikowitzky, T.L. (2009). Identification and chemical characterization of specific organic constituents of petrochemical effluents. Water Res. 43(15), 3797–3812. DOI: org/10.1016/j.watres.2009.06.006.
  • 2. Cechinel, M.A.P.M., Pozdniakova, D.A., Mazur, T.A., Boaventura, L.P. & Rui, A.R. (2016). Removal of metal ions from a petrochemical wastewater using brown macro-algae as natural cation-exchangers. J. Chem. Eng. 286, 1–15. DOI: org/10.1016/j.cej.2015.10.042.
  • 3. Kalantary, R.R., Mohseni-Bandpi, A., Esrafili, A., Nasseri, S., Ashmagh, F.R., Jorfi, S. & Ja’fari, M. (2014). Effectiveness of biostimulation through nutrient content on the bioremediation of phenanthrene contaminated soil. J. Environ. Health Sci. Eng. 24, 12(1), 143. DOI: 10.1186/s40201-014-0143-1.
  • 4. Rezaei Kalantary, R.B.A., Mohseni Bandpi, A., Esrafili, A. & Jorfi, S. (2013). Modification of PAHs Biodegradation with Humic Compounds. J. Soil & Sedim. Contamin. 22, 185–198. DOI: org/10.1080/15320383.2013.722139.
  • 5. Lefebvre, O. & Moletta, R. (2006). Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res. 40(20), 3671–3682. DOI: org/10.1016/j.watres.2006.08.027.
  • 6. Yeo, I.A., Yoon, S.H. & Yee, J.J. (2013). Development of an urban energy demand forecasting system to support environmentally friendly urban planning. Appl. Energy 110, 304–317. DOI: org/10.1016/j.apenergy.2013.04.065.
  • 7. Jorfi, S., Rezaee, A., Mobeh-Ali, G.A. & Jaafarzadeh, N.A. (2013) Application of Biosurfactants Produced by Pseudomonas aeruginosa SP4 for Bioremediation of Soils Contaminated by Pyrene. J. Soil & Sedim. Contamin. 22, 890–911. DOI: org/10.1080/15320383.2013.770439.
  • 8. Tayybi, T., Jorfi, S., Ghaffari, S. & Kujlu, R. 2016. Bioremediation of n-hexadecane contaminated soils using pseudomonas aeruginosa bacteria isolated from coastal areas. J. Mazan.Uni. Med. Sci. 26(140), 127–136.
  • 9. Ahmadi, M.R.M.H.R., Jaafarzadeh, N., Mostoufid, A., Saeedie, R., Barzegarc, G. & Jorfia, S. (2017). Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite. J. Environ. Manage 186, 55–63. DOI: org/10.1016/j.jenvman.2016.09.088
  • 10. Namata, N. & Patil, S.R.S. (2015). Degradation of Reactive Yellow 145 dye by persulfate using microwave and conventional heating. J. Water Process. Eng. 7, 314–327. DOI: org/10.1016/j.jwpe.2015.08.003.
  • 11. Soltani, R.D.J.S., Ramezani, H. & Purfadakari, S. (2016). Ultrasonically induced ZnO-biosilica nanocomposite for degradation of a textile dye in aqueous phase. Ultra. Sonochem 28, 69–78. DOI: 10.1016/j.ultsonch.2015.07.002.
  • 12. Sundarapandiyan, S.C.R., Ramanaiah, B., Krishnan, S. & Saravanan, P. (2010). Electrochemical oxidation and reuse of tannery saline wastewater. J. Hazard Mater. 180(1–3), 197–203. DOI: org/10.1016/j.jhazmat.2010.04.013.
  • 13. Jorfi, S.D.C.S.R., Ahmadi, M., Khataeed, A. & Safarie, M. (2017). Sono-assisted adsorption of a textile dye on milk vetch-derived charcoal supported by silica nanopowder. J Environ Manage. 187, 111–121. DOI: org/10.1016/j.jenvman.2016.11.042
  • 14. Darvishi Cheshmeh Soltani, R.J., Safari, S. & Rajaei, M.M.S. (2016). Enhanced sonocatalysis of textile wastewater using bentonite-supported ZnO nanoparticles: Response surface methodological approach. J. Environ. Manage. 179, 47–57. DOI: org/10.1016/j.jenvman.2016.05.001.
  • 15. Naddeo, V.C.A. (2013). Wastewater Treatment by Combination of Advanced Oxidation Processes and Conventional Biological Systems. J. Bioremed. Biodeg. 4, 208. DOI: 10.4172/2155-6199.1000208.
  • 16. Yang, Q.X.P., Ding, P., Chu, L. & Wang, J. (2015). Treatment of petrochemical wastewater by microaerobic hydrolysis and anoxic/oxic processes and analysis of bacterial diversity. Biores. Technol. 196, 169–175. DOI: org/10.1016/j.biortech.2015.07.087.
  • 17. Xiong, X.S.B., Zhang, J., Gao, N., Shen, J., Li, J. & Guan, X. (2014). Activating persulfate by Fe(0) coupling with weak magnetic field: performance and mechanism. Water Res. 62, 53–62. DOI: org/10.1016/j.watres.2014.05.042.
  • 18. Abu Amr, S.S.A. & Adlan, M.N. (2013). Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process. Waste Manag. 33(6), 1434–1441. DOI: org/10.1016/j.wasman.2013.01.039.
  • 19. Qi, C.L., Xitao L., Chunye Z., Xiaohui M., Jun, T.H. & Ye, W. (2014). Degradation of sulfamethoxazole by microwave-activated persulfate: Kinetics, mechanism and acute toxicity. J. Chem. Eng. 249, 6–14. DOI: org/10.1016/j.cej.2014.03.086.
  • 20. Furman, O.S., Teel, A.L. & Watts, R.J. (2010). Mechanism of base activation of persulfate. Environ. Sci. Technol. 44, 6423–6428. DOI: 10.1021/es1013714.
  • 21. Liang, C.J. (2010). Mass transfer and chemical oxidation of naphthalene particles with zerovalent iron activated persulfate. Environ. Sci. Technol. 44, 8203–8208. DOI: 10.1021/es903411a.
  • 22. Tan, C.G., Deng, N., Yang, A., & Deng, N. (2012). Heat-activated persulfate oxidation of diuron in water. J. Chem. Eng. 203, 294–300. DOI: org/10.1016/j.seppur.2013.03.003.
  • 23. Weng, C.H. & Tsai, K.L. (2016). Ultrasound and heat enhanced persulfate oxidation activated with Fe(0) aggregate for the decolorization of C.I. Direct Red 23. Ultr. Sonochem. 29, 11–18. DOI: org/10.1016/j.ultsonch.2015.08.012.
  • 24. Ji, Y., Shi, Y., Dong, W., Wen, X., Jiang, M. & Lu, J. (2016). Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution. J. Chem. Eng. 298, 225–233. DOI: org/10.1016/j.cej.2016.04.028.
  • 25. Fan, Y.J.Y., Kong, D., Lu, J. & Zhou, Q. (2015). Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process. J Hazard Mater. 300, 39–47. DOI: org/10.1016/j.jhazmat.2015.06.058.
  • 26. Tan, C., Gao, N., Deng, Y., Rong, W., Zhou, S. & Lu, N. (2013). Degradation of antipyrine by heat activated persulfate. Separat. Purif. Technol. 109, 122–128. DOI: 10.1016/j.seppur.2013.03.003.
  • 27. APHA: Standard Methods for the Examination of Water & Wastewater. twenty first ed. American Public Health Assoiation, Washington, DC 2005.
  • 28. Chen, X.M.M. & Zhang, Y. (2016). Degradation of p-Nitrophenol by thermally activated persulfate in soil system. J. Chem. Eng. 283, 1357–1365. DOI: org/10.1016/j.cej.2015.08.107.
  • 29. Vicente, F., Santos, A., Romero, A. & Rodriguez, S. (2011). Kinetic study of diuron oxidation and mineralization by persulphate: Effects of temperature, oxidant concentration and iron dosage method. J. Chem. Eng. 170(1), 127–135. DOI: org/10.1016/j.cej.2011.03.042.
  • 30. Zhang, M., Chen, X., Zhou, H., Murugananthan, M. & Zhang, Y. (2015). Degradation of p-nitrophenol by heat and metal ions co-activated persulfate. J. Chem. Eng. 264, 39–47. DOI: org/10.1016/j.cej.2014.11.060.
  • 31. Gao, Y.Q., Gao, N.Y., Deng, Y., Yang, Y.Q. & Ma, Y. (2012). Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. J. Chem. Eng. 195–196, 248–253. DOI: org/10.1016/j.cej.2012.04.084.
  • 32. Yang, S., Yang, X., Shao, X., Niu, R. & Wang, L. (2011). Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature. J. Hazard. Mater. 186(1), 659–666. DOI: org/10.1016/j.jhazmat.2010.11.057.
  • 33. Yang, S., Wang, P., Yang, X., Wei, G., Zhang, W. & Shan, L. (2009). A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave-activated persulfate oxidation. J. Environ. Sciences. 21(9), 1175–1180. DOI: 10.1016/S1001-0742(08)62399-2.
  • 34. Vicente, F.S.A., Sagüillo, E.G. & Villacorta, A.M. (2012). Diuron abatement in contaminated soil using Fenton-like process. J. Chem. Eng. 183, 357–364. DOI: org/10.1016/j.cej.2012.01.010
  • 35. Hori, H.Y.A., Hayakawa, E., Taniyasu, S., Yamashita, N., Kutsuna, S. & Kiatagawa, H. (2005). Efficient Decomposition of Environmentally Persistent Perfluorocarboxylic Acids by Use of Persulfate as a Photochemical Oxidant. J. Environ. Sci. Technol. 39, 2383–2388. DOI: 10.1021/es0484754.
  • 36. Ji, Y., Dong, C., Kong, D., Lu, J. & Zhou, Q. (2015). Heat-activated persulfate oxidation of atrazine: Implications for remediation of groundwater contaminated by herbicides. J. Chem. Eng. 263, 45–54. DOI: org/10.1016/j.cej.2014.10.097.
  • 37. Deng, J., Shao, Y., Gao, N., Deng, Y., Zhou, S. & Hu, X. (2013). Thermally activated persulfate (TAP) oxidation of antiepileptic drug carbamazepine in water. J. Chem. Eng. 228, 765–771. DOI: org/10.1016/j.cej.2013.05.044.
  • 38. Park, S., Lee, L.S., Medina, V.F., Zull, A. & Waisner, S. (2016). Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation. Chemosphere 145, 376–383. DOI: 10.1016/j.chemosphere.2015.11.097.
  • 39. Kordkandi, S.A. & Forouzesh, M. (2014). Application of full factorial design for methylene blue dye removal using heat-activated persulfate oxidation. J. Taiwan Ins. Chem. Eng. 45(5), 2597–2604. DOI: org/10.1016/j.jtice.2014.06.015.
  • 40. Zou, J., Ma, J., Zhang, X. & Xie, P. (2014). Rapid spectrophotometric determination of peroxymonosulfate in water with cobalt-mediated oxidation decolorization of methyl orange. J. Chem. Eng. 253, 34–39. DOI: org/10.1016/j.cej.2014.05.042.
  • 41. Deng, Y. & Ezyske, C.M. (2011). Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate. Water Res. 45(18), 6189–6194. DOI: org/10.1016/j.watres.2011.09.015.
  • 42. Furman, O.S., Teel, A, Ahmad, M. & Watts, R.J. (2011). Effect of Basicity on Persulfate Reactivity. J. Environ. Eng. 137(4), 241–247. DOI: 10.1061/(ASCE)EE.1943-7870.0000323.
  • 43. Ahmadian, M.Y., Van Ginkel, N., Zare, S.W., Rahimi, M.R. & Fatehizadeh, S.A. (2012). Kinetic study of slaughterhouse wastewater treatment by electrocoagulation using Fe electrodes. Water Sci. Technol. 66(4), 754–760. DOI: 10.2166/wst.2012.232.
  • 44. Huang, R., Fang, Z., Fang, X. & Tsang, E.P. (2014). Ultrasonic fenton-like catalytic degradation of bisphenol a by ferroferric oxide(fe3o4) nanoparticles prepared from steel pickling waste liquor. J. Coll. & Inter Sci. 436, 258–266. DOI: org/10.1016/j.jcis.2014.08.035.
  • 45. Jorfi, S., Barzegar, G., Ahmadi, M., Darvishi Cheshmeh Soltani, R., Alah Jafarzadeh Haghighifard, N., Takdastan, A., Saeedi, R. & Abtahi, M. (2016). Enhanced coagulation-photocatalytic treatment of Acid red 73 dye and real textile wastewater using UVA/synthesized MgO nanoparticles. J. Environ. Manage 177, 111–118. DOI: 10.1016/j.jenvman. DOI: org/10.1016/j.jcis.2014.08.035.
  • 46. Cai, C.Z., Zhong, H. & Hou, X.L. (2014). Electrochemical enhanced heterogeneous activation of peroxydisulfate by Fe-Co/SBA-15 catalyst for the degradation of Orange II in water. Water Res. 66, 473–485. DOI: org/10.1016/j.watres.2014.08.039.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c55d6404-9dea-4d60-82ae-27bc0f34d192
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.