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Abstract In this paper, we establish a new result followed from Gaussian Pell
polynomials matrix, Qn(x)P (x) (cf. Serpil and Sinan (2018)) whose elements are
Gaussian Pell polynomials and we develop a new coding and decoding method fol-
low from Gaussian Pell polynomials matrix, Qn(x)P (x). The correction ability of
this method is 93:33% .
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1. Introduction. The Pell numbers are de�ned by the recurrence rela-

tion:

Pn = 2Pn−1 + Pn−2 for n ⩾ 2

with initial seeds

P0 = 0, P1 = 1.

The Pell numbers, Pn and silver ratio,

µ = lim
n−→∞

Pn

Pn−1
= 1 +

√
2

have appeared in sciences and information theory Stakhov (2006), Stakhov (2007),

Horadam (1971), Basu and Prasad (2010), Halici (2011), El Naschie (2009).

The Pell polynomials Serpil and Sinan (2018) are de�ned by the recurrence

relation:

Pn(x) = 2xPn−1(x) + Pn−2(x) for n ⩾ 2

with initial seeds

P0(x) = 0, P1(x) = 1.

The Gaussian Pell polynomials Serpil and Sinan (2018) are de�ned by the

relation:

GPn(x) = Pn(x) + iPn−1(x)
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where i is the imaginary unit which satis�es i2 = −1.
The Gaussian Pell polynomials Serpil and Sinan (2018) are de�ned by the

recurrence relation:

GPn(x) = 2xGPn−1(x) +GPn−2(x) for n ⩾ 2

with initial seeds

GP0(x) = i, GP1(x) = 1.

2. Gaussian Pell polynomials matrix, Qn(x)P (x). In this section,

we de�ned a Gaussian Pell polynomials matrix, Qn(x)P (x),

Qn(x)P (x) =

(
GPn+2(x) GPn+1(x)
GPn+1(x) GPn(x)

)
where

Q(x) =

(
2x 1
1 0

)
and

P (x) =

(
2x+ i 1

1 i

)
DetQ(x) = −1, DetP (x) = 2(−1+ ix) and Det(Qn(x)P (x)) = 2(−1)n(−1+
ix), which is known as Cassini formula for the Gaussian Pell polynomials.

3. Gaussian Pell polynomials coding and decoding method. In

this paper, we introduce Gaussian Pell polynomials the coding and decoding

method, which is applicable for a complex plane. In this method, we repre-

sent the message in the form of nonsingular square matrix, M of order 2 and

we represent the Gaussian Pell polynomials matrix, Qn(x)P (x) of order 2 as

coding matrix and its inverse matrix (Qn(x)P (x))−1 as a decoding matrix.

We represent a transformation M × (Qn(x)P (x)) = E as Gaussian Pell poly-

nomials coding and a transformation E × (Qn(x)P (x))−1 = M as Gaussian

Pell polynomials decoding. We represent the matrix, E as code matrix.

3.1. Example of Gaussian Pell polynomials coding and decoding

method. Let us represent the initial message in the form of the nonsingular

square matrix, M of order 2

M =

(
m1 m2

m3 m4

)
. (1)

Let us assume that all elements of the matrix are positive integer i.e., m1, m2,

m3, m4 > 0. We can select for any value of n from Gaussian Pell polynomials

matrix, Qn(x)P (x) as a coding matrix. We simply write for n = 1

Q(x)P (x) =

(
GP3(x) GP2(x)
GP2(x) GP1(x)

)
=

(
4x2 + 1 + i2x 2x+ i

2x+ i 1

)
. (2)
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Then the inverse of Q(x)P (x) is given by

(Q(x)P (x))−1 =
1

(−2)(−1 + ix)

(
GP1(x) −GP2(x)
−GP2(x) GP3(x)

)
=

1

(−2)(−1 + ix)

(
1 −2x− i

−2x− i 4x2 + 1 + i2x

)
. (3)

Then the Gaussian Pell polynomials coding of the message (1) consists of the

multiplication of the initial matrix (2) that is

M × (Q(x)P (x)) =

(
m1 m2

m3 m4

)(
4x2 + 1 + i2x 2x+ i

2x+ i 1

)
=

(
4m1x

2 +m1 + 2m2x+ i(2m1x+m2) 2m1x+m2 + im1

4m3x
2 +m3 + 2m4x+ i(2m3x+m4) 2m3x+m4 + im3

)
=

(
e1 e2
e3 e4

)
= E

where

e1 = 4m1x
2 +m1 + 2m2x+ i(2m1x+m2),

e2 = 2m1x+m2 + im1,

e3 = 4m3x
2 +m3 + 2m4x+ i(2m3x+m4),

e4 = 2m3x+m4 + im3.

Then the code message, E = e1, e2, e3, e4 is sent to a channel. The decoding
of the code message, E performed by following way,(

e1 e2
e3 e4

)
1

(−2)(−1 + ix)

(
1 −2x− i

−2x− i 4x2 + 1 + i2x

)
=

1

(−2)(−1 + ix)

(
e1 − 2e2x− ie2 −2e1x+ 4e2x

2 + e2 + i(−e1 + 2e2x)
e3 − 2e4x− ie4 −2e3x+ 4e4x

2 + e4 + i(−e3 + 2e4x)

)
=

(
m1 m2

m3 m4

)
= M.

4. Determinant of the code matrix, E. The code matrix, E is de�ned

by the following formula E = M × (Qn(x)P (x)). According to the matrix

theory Hohn (2002) we have

Det E = Det(M × (Qn(x)P (x))) = Det M ×Det (Qn(x)P (x)) (4)

= Det M ×Det (Qn(x))Det (P (x)).

5. Relations between the code matrix elements Case I

When n = 2k + 1 i.e. when n is an odd.
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We can write the code matrix, E and the initial message, M in the following

way

E = M × (Q2k+1(x)P (x)) =

(
m1 m2

m3 m4

)(
GP2k+3(x) GP2k+2(x)
GP2k+2(x) GP2k+1(x)

)
=

(
e1 e2
e3 e4

)
and

M = E × (Q2k+1(x)P (x))−1

=

(
e1 e2
e3 e4

)
1

2(−1 + ix)

(
−GP2k+1(x) GP2k+2(x)
GP2k+2(x) −GP2k+3(x)

)
=

1

2(−1 + ix)

×
(

−e1GP2k+1(x) + e2GP2k+2(x) e1GP2k+2(x)− e2GP2k+3(x)
−e3GP2k+1(x) + e4GP2k+2(x) e3GP2k+2(x)− e4GP2k+3(x)

)
.

Since m1, m2, m3, m4 are positive integers, we have

m1 =
−e1GP2k+1(x) + e2GP2k+2(x)

2(−1 + ix)
> 0, (5)

m2 =
e1GP2k+2(x)− e2GP2k+3(x)

2(−1 + ix)
> 0, (6)

m3 =
−e3GP2k+1(x) + e4GP2k+2(x)

2(−1 + ix)
> 0, (7)

m4 =
e3GP2k+2(x)− e4GP2k+3(x)

2(−1 + ix)
> 0. (8)

From (5) and (6) we get

GP2k+3

GP2k+2
<

e1
e2

<
GP2k+2

GP2k+1
. (9)

From (7) and (8) we get

GP2k+3

GP2k+2
<

e3
e4

<
GP2k+2

GP2k+1
. (10)

Therefore, for large value of k we get

e1
e2

≈ µ,
e3
e4

≈ µ where µ = 1 +
√
2. (11)

Case II

When n = 2k i.e. when n is even.

We will get the same result as above in (11).

6. Error detection and correction.
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6.1. Error detection. The main aim of the coding theory are the de-

tection and correction of errors arising in the code message, E under the

in�uence of noise in the communication channel. The most important idea is

using the property of the determinant of the matrix as the check criterion of

the transmitted message, E. Let the initial message, M be given by

M =

(
m1 m2

m3 m4

)
(12)

where all elements m1, m2, m3, m4 of the matrix, M are positive integers.

Now the determinant of M is

Det M = m1m4 −m2m3 (13)

and the code message, E

E = (M × (Qn(x)P (x))). (14)

So,

Det E = Det (M × (Qn(x)P (x))) = Det M ×Det (Qn(x)P (x)) (15)

= Det M ×Det (Qn(x))Det P (x). (16)

This shows that the determinant of the initial message, M is connected with

the determinant of the code message, E by the relation (15)-(16). The value

of the determinant of the message, E depends on the number n is even or

an odd. The essence of the method consists that the sender calculates the

determinant of the initial message, M represented in the matrix form (12)

and sends it to the channel after the code message, E (14). The receiver

calculates the determinant of the code message, E (14) and compares the

determinant of the initial message of M (12) received from the channel. If

this comparison corresponds to (15)-(16) it means that the code message, E
(14) is correct and the receiver can decode the code message, E (14) otherwise

the code message, E (14) is not correct. Error detection is the �rst step in

communication of messages.

6.2. Error correction. The possibility of restoration of the code mes-

sage, E can be done by using the property of the Gaussian Pell polynomials

matrix, Qn(x)P (x). For selecting n = 1, Gaussian Pell polynomials matrix,

Qn(x)P (x) will be

Q(x)P (x) =

(
GP3(x) GP2(x)
GP2(x) GP1(x)

)
=

(
4x2 + 1 + i2x 2x+ i

2x+ i 1

)
. (17)

Then the Gaussian Pell polynomials coding of the message (12) consists of
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the multiplication of the initial matrix (17) that is

M × Q(x)P (x) =

(
m1 m2

m3 m4

)(
4x2 + 1 + i2x 2x+ i

2x+ i 1

)
=

(
4m1x

2 +m1 + 2m2x+ i(2m1x+m2) 2m1x+m2 + im1

4m3x
2 +m3 + 2m4x+ i(2m3x+m4) 2m3x+m4 + im3

)
=

(
e1 e2
e3 e4

)
= E

where

e1 = 4m1x
2 +m1 + 2m2x+ i(2m1x+m2), e2 = 2m1x+m2 + im1,

e3 = 4m3x
2 +m3 + 2m4x+ i(2m3x+m4), e4 = 2m3x+m4 + im3.

After constructing the code matrix, E we calculate the determinant of the

initial matrix, M (12). The determinant is sent to the communication channel

after the code message, E = e1, e2, e3, e4. Assume that the communication

channel has the special means for the error detection in each of the elements

e1, e2, e3, e4 of the code message, E. Assume that the �rst element e1 of E
is received with the error. Then, we can represent the code message in the

matrix form

E′ =

(
y e2
e3 e4

)
(18)

where y is the destroyed element of the code message, E but the rest matrix

entries must be correct and equal to the following:

e2 = 2m1x+m2 + im1; e3 = 4m3x
2 +m3 + 2m4x+ i(2m3x+m4);

e4 = 2m3x+m4 + im3.

Then, according to the properties of the Gaussian Pell polynomials coding

method, we can write the following equation for calculation of y

ye4 − e2e3 = y(2m3x+m4 + im3) (19)

−(2m1x+m2 + im1)(4m3x
2 +m3 + 2m4x+ i(2m3x+m4))

From (19) with the help of (15)-(16), we get

y = 4m1x
2 +m1 + 2m2x+ i(2m1x+m2). (20)

Comparing the calculated value (20) with the entry e1 of the code matrix, E
given with (12) we conclude that y = e1. Thus, we have restored the code

message, E using the property of determinant of the Gaussian Pell polynomi-

als Qn(x)P (x) matrix. But in the real situation usually we do not know what

element of the code message is destroyed. In this case, we suppose di�erent
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hypotheses about the possible destroyed elements and then we test these hy-

potheses. However, we have one more condition for the elements of the code

matrix E that all its elements are integers. Our �rst hypothesis is that we

have the case of a single error in the code matrix E received from the com-

munication channel. It is clear that there are four variants of the single errors

in the code matrix, E:

(a)

(
y e2
e3 e4

)
(b)

(
e1 z
e3 e4

)
(c)

(
e1 e2
u e4

)
(d)

(
e1 e2
e3 v

)
(21)

where y, z, u, v are destroyed elements. In this case we can check di�erent

hypotheses (21). For checking the hypothesis (a), (b), (c), (d) we can write

the following algebraic equations based on the checking relation (4):

ye4 − e2e3 = Det (Qn(x)P (x))Det M, (22)

It is a possible single error is in the element e1;

e1e4 − ze3 = Det (Qn(x)P (x))Det M, (23)

It is a possible single error is in the element e2;

e1e4 − e2u = Det (Qn(x)P (x))Det M, (24)

It is a possible single error is in the element e3;

e1v − e2e3 = Det (Qn(x)P (x))Det M (25)

It is a possible single error is in the element e4.

(26)

It follows from (22)-(25) four variants for calculation of the possible single

errors.

y =
Det (Qn(x)P (x))Det M + e2e3

e4
, (27)

z =
−Det (Qn(x)P (x))Det M + e1e4

e3
, (28)

u =
−Det (Qn(x)P (x))Det M + e1e4

e2
, (29)

v =
Det (Qn(x)P (x))Det M + e2e3

e1
. (30)

The formula (27)-(30) give four possible variants of single error but we have

to choice the correct variant only among the cases of the integer solutions
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y, z, u, v; besides, we have to choose such solutions, which satisfy the ad-

ditional checking relations (11). If calculations by formulas (27)-(30) do not

give an integer result we have to conclude that our hypothesis about the sin-

gle error is incorrect or we have an error in the checking element Det M . For

the latter case we can use the approximate equalities (11) for checking the

correctness of the code matrix E. By analogy we can check all hypotheses of

double error in the code matrix. As example let us consider the following case

of double errors in the code matrix E(
y z
e3 e4

)
(31)

where y, z are the destroyed elements of the code message. Using the �rst

checking relation (4) we can write the following algebraic equation for the

matrix (31):

ye4 − ze3 = Det (Qn(x)P (x))Det M. (32)

However, according to the second checking relation (11) there is the following

relation between y and z :

y ≈ µz. (33)

It is important to emphasize that (32) is Diophantine one. As the Diophantine

equation (32) has many solutions we have to choice such solutions y, z which

satisfy to the checking relation (33). By analogy one may prove that using

checking relations (4), (11) by means of solution of the Diophantine equation

similar to (32) we can correct all possible double errors in the code matrix.

However, we can show by using such approach there is a possibility to correct

all possible triple errors in the code matrix E, for example

(
y z
u e4

)
etc.

where y, z, u are destroyed elements. Thus, our method of error correction

is based on the veri�cation of di�erent hypotheses about errors in the code

matrix by using the checking relations (4), (11) and by using the fact that

the elements of the code matrix are integers. If all our solutions do not bring

to integer solutions it means that the checking element Det M is erroneous or

we have the case of fourfold error in the code matrix, E and we have to reject

the code matrix, E as defective and not correctable. Our method allows to

correct 14 cases among (4C1+
4C2+

4C3+
4C4) = 24−1 = 15 cases. It means

that correction ability of the method is 14
15 = 0.9333 = 93.33%.

7. Comparison of the Gaussian Pell polynomials coding method

to the other coding method. The Gaussian Pell polynomials coding

method is based on matrix approach which possess many peculiarities and

advantages in comparison to classical (algebraic) coding method. The use of

matrix theory for designing new error-correction codes is the �rst peculiarity

of the Gaussian Fibonacci coding method. The large information units, in

particular matrix elements, are objects of detection and correction of errors
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in the Gaussian Pell polynomials coding method. There is no theoretical re-

strictions for the value of the numbers that can be matrix elements whereas in

algebraic coding theory there are very small information elements, bits and

their combinations which are the objects of detection and correction. The

Gaussian Pell polynomials coding method has a very high correction ability

in comparison to the classical (algebraic) coding method. The Gaussian Pell

polynomials coding and decoding method is the extension of the Fibonacci

coding and decoding method Stakhov (2006) and it is applicable for a complex

plane too.

8. Conclusion. The Gaussian Pell polynomials coding method is the

main application of the Qn(x)P (x) matrix. The Gaussian Pell polynomials

coding method reduces to matrix multiplication, a well-known algebraic op-

eration, which is realized very well in modern computers. The main practical

peculiarity of this method is that large information units, in particular, matrix

elements, are objects of detection and correction of errors. The elements of

the initial matrix, M and therefore the elements of the code matrix, E can be

the numbers of unlimited value. This means that theoretically the Gaussian

Pell polynomials coding method allows to correct the numbers of unlimited

value. The correction ability of this method is 93.33%.

9. Open Problem. There is an open problem to de�ne a new matrix

Qn(x)P (x) of order n whose elements are Gaussian Pell polynomials. This

matrix will be useful to establish the error detection and correction and rela-

tions among the code matrix elements.
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Teoretyczna interpretacja wielomianów Gaussa-Pella jako kodowania.
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Streszczenie W artykule z wykorzystaniem macierzy wielomianów Gaussa Pella,
Qn(x)P (x) (v. Serpil and Sinan (2018)), opracowano now¡ metod¦ kodowania. Ta
metoda wynika z wªasno±ci tej macierzy. Uzyskany kod daje mo»liwo±¢ korekcji na
poziomie 93:33% .
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