Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Dynamic charge carrier transport behavior in the zirconium (Zr) oxide was investigated based on the frequency-dependent capacitance-voltage (C-V) and temperature-dependent current-voltage (I-V) measurements. The Zr oxide was formed on the ZIRLO and newly developed zirconium-based alloy (NDZ) by corrosion in the PWR-simulated loop at 360°C. The corrosion test for 90 days showed that the NDZ exhibits better corrosion resistance than ZIRLO alloy. Based on the C-V measurement, dielectric constant values for the Zr oxide was estimated to be 11.28 and 11.52 for the ZIRLO and NDZ. The capacitance difference between low and high frequency was larger in the ZIRLO than in the NDZ, which was attributed to more mobile electrical charge carriers in the oxide layer on the ZIRLO alloy. The current through the oxide layers on the ZIRLO increased more drastically with increasing temperature than on the NDZ, which indicating that more charge trap sites exist in the ZIRLO than in NDZ. Based on the dynamiccharge carrier transport behavior, it was concluded that the electrical charge carrier transport within the oxide layers was closely related with the corrosion behavior of the Zr alloys.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1063--1067
Opis fizyczny
Bibliogr. 16 poz., rys., wzory
Twórcy
autor
- Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul, Republic of Korea
autor
- Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul, Republic of Korea
autor
- KEPCO Nuclear Fuel, Daejeon, Republic of Korea
autor
- Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul, Republic of Korea
autor
- Korea Atomic Energy Research Institute, Nuclear Fuel Safety Research Division, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 34057, Republic of Korea
Bibliografia
- [1] F. Garzarolli, H. Stehle, E. Steinberg, ASTM STP 1295, 12 (1996).
- [2] A.V. Nikulina, A. M. Vladimir, M. M. Peregud, Y. K. Bibilashvili, V. A. Kotrekhov, A. F. Lositsky, N. V. Kuzmenko, Y. P. Shevnin, V. K. Shamardin, G. P. Kobylyansky, A. E. Novoselov, ASTM STP 1295, 785 (1996).
- [3] J. Y. Park, B. K. Choi, Y. H. Jeong, Y. H. Jung, J. Nucl. Mater. 340, 237 (2005).
- [4] H. G. Kim, J. H. Yang, W. J. Kim, Y. H. Koo, Nucl. Eng. Technol. 48, 1 (2016).
- [5] H. G. Kim, B. K. Choi, Y. H. Jeong, Met. Mater. Int. 15, 43 (2009).
- [6] H. Anada, K. Nomoto, Y. Shida, ASTM STP 1245, 307 (1994).
- [7] G. P. Sabol, ASTM STP 1467, 3 (2005).
- [8] Y. H. Jeong, S. Y. Park, M. H. Lee, B. K. Choi, J. H. Baek, J. Y. Park, J. H. Kim, H. G. Kim, J. Nucl. Sci. Technol. 43, 977 (2006).
- [9] B. Cox, J. Nucl. Mater. 28, 1 (1968).
- [10] B. Cox, J. Nucl. Mater. 29, 50 (1969).
- [11] B. Cox, J. P. Pemsler, J. Nucl. Mater. 28, 73 (1968).
- [12] R. C. Garvie, P. S. Nicholson. J. Am. Ceram. Soc. 55, 303 (1972).
- [13] B. Cox, Third International Congress on Metallic Corrosion, Moscow 4, 341 (1966).
- [14] S. O. Kasap, Principles of Electronic Materials and Devices, New York 2006.
- [15] J. Frenkel, Phys. Rev. 54, 647 (1938).
- [16] P. Rottländer, M. Hehn, A. Schuhl, Phys. Rev. B 65, 054422 (2002).
Uwagi
EN
1. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT of Korean government (No. 2019M2A8A5019865 and 2017M2A8A5015058).
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5569b14-80e8-4035-bade-eeb32c9d48b9